Skip to main content
Log in

Immortalization of mutant p53-transfected human fibroblasts by treatment with either 4-nitroquinoline 1-oxide or x-rays

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The study of in vitro cell transformation is valuable for understanding the multistep carcinogenesis of human cells. The difficulty in inducing neoplastic transformation of human cells by treatment with chemical or physical agents alone is due to the difficulty in immortalizing normal human cells. Thus, the immortalization step is critical for in vitro neoplastic transformation of human cells. We transfected a mutant p53 gene (mp53: codon 273Arg-His) into normal human fibroblasts and obtained two G418-resistant mp53-containing clones. These clones showed an extended life span but ultimately senesced. However, when they were treated with either 4-nitroquinoline 1-oxide or X rays, they were immortalized. The immortalized cells showed both numerical and structural chromosome abnormalities, but they were not tumorigenic. The expression of mutant but not wild type p53 was detected in the immortalized cells by RT-PCR. Expression of p21, which is located downstream of p53, was remarkably reduced in the immortalized cells, resulting in increased cdk2 and cdc2 kinase activity. However, there was no significant difference between the normal and immortalized human cells in expression of another tumor suppressor gene, p16. These findings indicate that the p53-p21 cascade may play an important role in the immortalization of human cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai, L.; Mihara, K.; Kondo, T., et al. Immortalization of normal human fibroblasts by treatment with 4-nitroquinoline 1-oxide. Int. J. Cancer 53:451–456; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Bischoff, F. Z.; Yim, S. O.; Pathak, S., et al. Spontaneous abnormalities in normal fibroblasts from patients with Li-Fraumeni cancer syndrome: aneuploidy and immortalization. Cancer Res. 50:7979–7984; 1990.

    PubMed  CAS  Google Scholar 

  • Deng, C.; Zhang, P.; Harper, J. W., et al. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82:675–684; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Fushimi, K.; Iijima, M.; Gao, C., et al. Transformation of normal human fibroblasts into immortalized cells with the mutant p(p53) gene and X-rays. Int. J. Cancer 70:135–140, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Hayflick, L.; Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25:585–621; 1961.

    Article  Google Scholar 

  • Iijima, M.; Mihara, K.; Kondo, T., et al. Mutation in p53 and de-regulation of p53-related gene expression in three human cell lines immortalized with 4-nitroquinoline 1-oxide or 60Co gamma rays. Int. J. Cancer 66:698–702; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Lehman, T. A.; Modali, R.; Boukamp, P., et al. p53 Mutations in human immortalized epithelial cell lines. Carcinogenesis 14:833–839; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Linder, S.; Marshall, H. Immortalization of primary cells by DNA viruses. Exp. Cell Res. 191:1–7; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Michieli, P.; Chedid, M.; Lin, D., et al. Induction of WAF1/CIP1 by a p53-independent pathway. Cancer Res. 54:3391–3395; 1994.

    PubMed  CAS  Google Scholar 

  • Mihara, K.; Cao, X. R.; Yen, A., et al. Cell cycle-dependent regulation of phosphorylation of the human retinoblastoma gene product. Science 246:1300–1303; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Moyret, C.; Madsen, M. W.; Cooke, J., et al. Gradual selection of a cellular clone presenting a mutation at codon 179 of the p53 gene during establishment of the immortalized human breast epithelial cell line HMT-3522. Exp. Cell Res. 215:380–385; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Namba, M.; Nishitani, K.; Fukushima, F., et al. Multi-step neoplastic transformation of normal human fibroblasts by Co-60 gamma rays and Haras oncogenes. Mutat. Res. 199:415–423; 1988.

    PubMed  CAS  Google Scholar 

  • Namba, M.; Nishitani, K.; Hyodoh, F., et al. Neoplastic transformation of human diploid fibroblasts (KMST-6) by treatment with 60Co gamma rays. Int. J. Cancer 35:275–280; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Noble, J. R.; Rogan, E. M.; Neumann, A. A., et al. Association of extended in vitro proliferative potential with loss of p16INK4 expression. Oncogene 13:1259–1268, 1996.

    PubMed  CAS  Google Scholar 

  • Reznikoff, C. A.; Yeager, T. R.; Belair, C. D., et al. Elevated p16 and senescence and loss of p16 at immortalization in human papillomavirus 16 E6, but not E7 transformed human uroepithelial cells. Cancer Res. 56:2886–2890; 1996.

    PubMed  CAS  Google Scholar 

  • Rhim, J. S.; Yoo, J. H.; Park, J. H., et al. Evidence for the multistep nature of in vitro human epithelial cell carcinogenesis. Cancer Res. 50:5653s-5657s; 1990.

    PubMed  CAS  Google Scholar 

  • Robetorye, R. S.; Nakanishi, M.; Venable, S. F., et al. Regulation of p21Sdi1/Cip1/Waf1/mda-6 and expression of other cyclin-dependent kinase inhibitors in senescent human cells. Mol. Cell. Diff. 4:113–126; 1996.

    CAS  Google Scholar 

  • Rogan, E. M.; Bryan, T. M.; Hukku, B., et al. Alterations in p53 and p16INK4 expression and telomere length during spontaneous immortalization of Li-Fraumeni syndrome fibroblasts. Mol. Cell. Biol. 15:4745–4753; 1995.

    PubMed  CAS  Google Scholar 

  • Seabright, M. A rapid banding technique for human chromosomes. Lancet II:971–972; 1971.

    Article  Google Scholar 

  • Serrano, M.; Hammon, G. J.; Beach, D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature (London) 366:704–707; 1993.

    Article  CAS  Google Scholar 

  • Shay, J. W.; Wright, W. E.; Werbin, H. Defining the molecular mechanisms of human cell immortalization. Biochim. Biophys. Acta 1072:1–7; 1991.

    PubMed  CAS  Google Scholar 

  • Shay, J. W.; Tomlinson, G.; Piatyszek, M. A., et al. Spontaneous in vitro immortalization of breast epithelial cells from a patient with Li-Fraumeni syndrome. Mol. Cell. Biol. 15:425–432; 1995.

    PubMed  CAS  Google Scholar 

  • Smith, J. R.; Nakanishi, M.; Robetorye, R. S., et al. Studies demonstrating the complexity of regulation and action of the growth inhibitory gene sdi1. Exp. Gerontol. 31:327–335; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Vojta, P. J.; Barrett, J. C. Genetic analysis of cellular senescence. Biochim. Biophys. Acta 1242:29–41; 1995.

    PubMed  Google Scholar 

  • Wazer, D. E.; Chu, Q.; Liu, X. L., et al. Loss of p53 protein during radiation transformation of primary human mammary epithelial cells. Mol. Cell. Biol. 14:2468–2478; 1994.

    PubMed  CAS  Google Scholar 

  • Wazer, D. E.; Liu, X. L.; Chu, Q., et al. Immortalization of distinct human mammary epithelial cell types by human papilloma virus 16 E6 or E7. Proc. Natl. Acad. Sci. USA 92:3687–3691; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, Y. X.; El-Deiry, W. S. Regulation of p21WAF1/CIP1 expression by p53-independent pathways. Oncogene 12:1557–1564; 1996.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kino, K., Fushimi, K., Gao, C. et al. Immortalization of mutant p53-transfected human fibroblasts by treatment with either 4-nitroquinoline 1-oxide or x-rays. In Vitro Cell.Dev.Biol.-Animal 33, 628–632 (1997). https://doi.org/10.1007/s11626-997-0113-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-997-0113-3

Key words

Navigation