Skip to main content
Log in

Functional and morphological differentiation of nonpigmented ciliary body epithelial cells grown on collagen rafts

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

We have examined the effect of alteration in cell shape on promoting differentiated morphology and physiology in cultured nonpigmented epithelial cells from the ciliary body. We have grown pure populations of nonpigmented cells on collagen gels released from the culture dish to create collagen rafts. Shortly after the gels were detached, the cells shrank in diameter and increased in height while they contracted the gel. Concurrently, the actin cytoskeleton reorganized to the cell cortex as found in vivo. After this differentiated morphology developed, large changes in intracellular Ca2+ could be elicited by simultaneous activation of acetylcholine and epinephrine or acetylcholine and somatostatin receptors as seen in intact tissue. Explant cultures of isolated nonpigmented cell layers maintained their actin distribution and also showed synergistic Ca2+ increases. Spread cells, grown on rigid substrates, had a disorganized cytoskeleton and rarely showed synergism. These data suggest that the mechanism underlying synergistic Ca2+ responses in the ciliary body is functional in nonpigmented cells grown on collagen rafts. In addition, this pathway appears to be sensitive to the disposition of the cell’s cytoarchitecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Ze’ev, A. The relationship between cytoplasmic organization, gene expression and morphogenesis. Trends Biochem. Sci. 11:478–481; 1986.

    Article  CAS  Google Scholar 

  2. Brandt, J. D.; Bartels, S. P.; Neufeld, A. H. Adrenergic stimulation of ciliary process epithelium causes surface membrane internalization. Invest. Ophthalmol. Vis. Sci. 28:431–444; 1987.

    PubMed  CAS  Google Scholar 

  3. Brubaker, R. F. Flow of aqueous humor in humans. Invest. Ophthalmol. Vis. Sci. 32:3145–3166; 1991.

    PubMed  CAS  Google Scholar 

  4. Cilluffo, M. C.; Fain, M. J.; Fain, G. L. Tissue culture of rabbit ciliary body epithelial cells on permeable supports. Exp. Eye Res. 57:513–526; 1993.

    Article  PubMed  CAS  Google Scholar 

  5. Clark, E.; Brugge, J. Integrins and signal transduction pathways: the road taken. Science 268:233–239; 1995.

    Article  PubMed  CAS  Google Scholar 

  6. Coca-Prados, M. Regulation of protein phosphorylation of the intermediate-sized filament vimentin in the ciliary epithelium of the mammalian eye. J. Biol. Chem. 260:10332–10338; 1985.

    PubMed  CAS  Google Scholar 

  7. Cowin, P.; Burke, B. Cytoskeleton-membrane interactions. Curr. Opin. Cell Biol. 8:56–65; 1996.

    Article  PubMed  CAS  Google Scholar 

  8. Crook, R. B.; Polansky, J. R. Neurotransmitters and neuropeptides stimulate inositol phosphates and intracellular calcium in cultured human nonpigmented ciliary epithelium. Invest. Ophthalmol. Vis. Sci. 33:1706–1716; 1992.

    PubMed  CAS  Google Scholar 

  9. Emerman, J. T.; Pitelka, D. R. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro 13:316–328; 1977.

    Article  PubMed  CAS  Google Scholar 

  10. Ewald, D. A.; Levitan, I. B. Ion channels regulated by calcium. In: Laczamarek, L. K.; Levitan, I. B., ed. Neuromodulation. New York, NY: Oxford University Press; 1987:138–158.

    Google Scholar 

  11. Fain, G. L.; Cilluffo, M. C.; Fain, M. J., et al. Isolation of non-pigmented epithelial cells from rabbit ciliary body. Invest. Ophthalmol. Vis. Sci. 29:817–821; 1988.

    PubMed  CAS  Google Scholar 

  12. Farahbakhsh, N.; Cilluffo, M. C. Synergistic effect of adrenergic and muscarinic receptor activation on [Ca2+]i in rabbit ciliary body epithelium. J. Physiol. (Lond.) 477:215–221; 1994.

    CAS  Google Scholar 

  13. Farahbakhsh, N. A.; Cilluffo, M. C. Synergistic increase in Ca2+ produced by AI adenosine and muscarinic receptor activation via a pertussistoxin-sensitive pathway in epithelial cells of the rabbit ciliary body. Exp. Eye Res. 64:173–179; 1997.

    Article  PubMed  CAS  Google Scholar 

  14. Folkman, J.; Moscana, A. The role of cell shape in growth control. Nature (Lond.) 273:345–349; 1978.

    Article  CAS  Google Scholar 

  15. Goldschmidt-Clermont, P. J.; Machesky, L. M.; Baldassare, J. J., et al. The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C. Science 247:1575–1578; 1990.

    Article  PubMed  CAS  Google Scholar 

  16. Grynkiewicz, G.; Poenie, M.; Tsien, R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–3450; 1985.

    PubMed  CAS  Google Scholar 

  17. Hay, E. D.; Svoboda, K. K. Extracellular matrix interactions with the cytoskeleton. In: Stein, W. D.; Bronner, F., ed. Cell shape: determinants, regulation, and regulatory role. San Diego, CA: Academic Press; 1989:147–172.

    Google Scholar 

  18. Hohn, H. P.; Steih, U.; Denker, H. W. A novel artificial substrate for cell culture: effects of substrate flexibility/malleability on cell growth and morphology. In Vitro Cell. Dev. Biol. 31A:37–44; 1995.

    Google Scholar 

  19. Hong, H. L.; Brunette, D. M. Effect of cell shape on proteinase secretion by epithelial cells. J. Cell. Sci. 87:259–267; 1987.

    PubMed  CAS  Google Scholar 

  20. Ingber, D. Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis. J. Cell. Biochem. 47:236–241: 1991.

    Article  PubMed  CAS  Google Scholar 

  21. Ingber, D. Integrins as mechanochemical transducers. Curr. Opin. Cell Biol. 3:841–848; 1991.

    Article  PubMed  CAS  Google Scholar 

  22. Ingber, D.; Folkman, J. Tension and compression as basic determinants of cell form and function: utilization of a cellular tensegrity mechanism. In: Stein, W. D.; Bronner, F., ed. Cell shape: determinants, regulation, and regulatory role. San Diego, CA: Academic Press; 1989:3–31.

    Google Scholar 

  23. Kasai, H.; Augustine, G. J. Cytosolic Ca2+ gradients triggering unidirectional fluid secretion from exocrine pancreas. Nature 348:735–738; 1990.

    Article  PubMed  CAS  Google Scholar 

  24. Lee, C. H.; Reisine, T. D.; Wax, M. B. Alterations of intracellular calcium in human non-pigmented ciliary epithelial cells of the eye. Exp. Eye Res. 48:733–743; 1989.

    Article  PubMed  CAS  Google Scholar 

  25. Longsdon, C.; Bisbee, C. A.; Rutten, M. J., et al. Fetal rabbit gastric epithelial cells cultured on floating collagen gels. In Vitro 18:233–242: 1982.

    Article  Google Scholar 

  26. Mito, T.; Delamere, N. A.; Coca-Prados, M. Calcium-dependent regulation of cation transport in cultured human nonpigmented ciliary epithelial cells. Am. J. Physiol. 264:C519-C526; 1993.

    PubMed  CAS  Google Scholar 

  27. Nakano, T.; Mead, A.; Sears, M. L. Culture of ciliary epithelial cells on floating collagen gel membranes. Invest. Ophthalmol. Vis. Sci. (Suppl.) 35:1787: 1994.

    Google Scholar 

  28. Opas, M. Expression of the differentiated phenotype by epithelial cells in vitro is regulated by both biochemistry and mechanics of the substratum. Dev. Biol. 131:281–293; 1989.

    Article  PubMed  CAS  Google Scholar 

  29. Ouchi, T. O.; Yoshimura, N.; Tanihara, H., et al. Ca2+ mobilization in nontransformed ciliary nonpigmented epithelial cells. Invest. Ophthalmol. Vis. Sci. 33:1696–1705; 1992.

    Google Scholar 

  30. Rafferty, N. S.; Rafferty, K. A.; Ito, E. Agonist-induced rise in intracellular calcium of lens epithelial cells: effects on the actin cytoskeleton. Exp. Eye Res. 59:191–201; 1994.

    Article  PubMed  CAS  Google Scholar 

  31. Roskelley, C. D.; Desprez, P. Y.; Bissell, M. J. Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. Proc. Natl. Acad. Sci. USA 91:12378–12382; 1994.

    Article  PubMed  CAS  Google Scholar 

  32. Roskelley, C. D.; Srebrow, A.; Bissell, M. J. A hierarchy of ECM-mediated signalling regulates tissue-specific gene expression. Curr. Opin. Cell Biol. 7:736–747; 1995.

    Article  PubMed  CAS  Google Scholar 

  33. Shütte, M.; Diadori, A.; Wang, C., et al. Comparative adrenocholinergic control of intracellular Ca2+ in the layers of the ciliary body epithelium. Invest. Opthalmol. Vis. Sci. 37:212–220; 1996.

    Google Scholar 

  34. Watt, F. M. The extracellular matrix and cell shape. Trends Biochem. Sci. 11:482–485; 1986.

    Article  CAS  Google Scholar 

  35. Wax, M. Signal transduction in the ciliary epithelium. In: Drance, S. M.; Van Buskirk, E. M.; Neufield, A. H., ed. Pharmacology of glaucoma. Baltimore, MD: Williams and Wilkins; 1992:184–210.

    Google Scholar 

  36. Weingeist, T. M. The structure of the developing and adult ciliary complex of the rabbit eye: a gross, light, and electron microscopic study. Doc. Ophthalmol. 28:205–373; 1970.

    Article  PubMed  CAS  Google Scholar 

  37. Wiederholt, M.; Helbig, H.; Korbmacher, C. Ion transport across the ciliary epithelium: lessons from cultured cells and proposed role of the carbonic anhydrase. In: Botre, F.; Gross, G.; Storey, B. T., ed. Carbonic anhydrase. New York, NY: Cambridge; 1991:232–244.

    Google Scholar 

  38. Yamada, K. M.; Miyamoto, S. Integrin transmembrane signaling and cytoskeletal control. Curr. Opin. Cell Biol. 7:681–689; 1995.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cilluffo, M.C., Farahbakhsh, N.A. & Fain, G.L. Functional and morphological differentiation of nonpigmented ciliary body epithelial cells grown on collagen rafts. In Vitro Cell.Dev.Biol.-Animal 33, 546–552 (1997). https://doi.org/10.1007/s11626-997-0097-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-997-0097-z

Key words

Navigation