Skip to main content

Advertisement

Log in

Enhanced growth of canine bone marrow stromal cell cultures in the presence of acidic fibroblast growth factor and heparin

  • Biotechnology
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The ex vivo establishment, expansion, transduction, and reintroduction of autologous bone marrow stromal cells offers a potential efficacious system for somatic cell gene therapy. It is likely that any ex vivo system will require the use of large numbers of cells which express high levels of transgene products. We present a method for routine expansion of canine bone marrow stromal cells, established from initial 10–20 ml marrow aspirates, to greater than 109 cells. This high level expansion of cell cultures uses the stimulatory effect of acidic fibroblast growth factor (aFGF) and heparin. In the absence of these factors, stromal cell cultures grow actively for only 1 to 2 passages, become flattened in morphology, and expand to only 108 cells. In the presence of heparin (5 U/ml), aFGF exerts its effect over a wide range of concentrations (0.1–10 ng/ml) in a dose-dependent manner. The stimulatory effect is dependent on the presence of both aFGF and heparin. Immunocytochemical and cytochemical analyses phenotypically characterize these stromal cells as bone marrow stromal myofibroblasts. Stromal cells grown in the presence of aFGF and heparin grow actively and maintain a fibroblast-like morphology for a number of passages, transduce efficiently with a human growth hormone (hGH) expression vector, and express and secrete high levels of hGH. Human marrow stromal cells were also established and expanded by the same culture method. This culture method should be of great value in somatic cell gene therapy for the delivery of secreted gene products to the plasma of large mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anklesaria, P.; FitzGerald, T. J.; Kase, K., et al. Improved hematopoiesis in anemic Sl/Sld mice by splenectomy and therapeutic transplantation of a hematopoietic microenvironment. Blood 74:1144–1151; 1989.

    PubMed  CAS  Google Scholar 

  • Anklesaria, P.; Kase, K.; Glowacki, J., et al. Engraftment of a clonal bone marrow stromal cell line in vivo stimulates hematopoietic recovery from total body irradiation. Proc. Natl. Acad. Sci. USA 84:7681–7685; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Bonanno, E.; Ercoli, L.; Missori, P., et al. Homogeneous stromal cell population from normal human adult bone marrow expressing alpha-smooth muscle actin filaments. Lab. Invest. 71:308–315; 1994.

    PubMed  CAS  Google Scholar 

  • Brazolot Millan, C. L.; Carter, R. F. Apparent engraftment of transduced long-term culture adherent cells into the canine bone marrow compartment, following intravenous or direct intra-marrow infusion. Blood 82 (Supplement 1):428a; 1993.

    Google Scholar 

  • Brazolot Millan, C. L.; Hawlery, R. G.; Carter, R. F. Expression of canine factor IX by transduced long-term culture adherent cells, and their engraftment in the canine bone marrow compartment following autologous transplantation. Blood 84:100a; 1994.

    Google Scholar 

  • Burgess, W. H.; Maciag, T. The heparin-binding (fibroblast) growth factor family of proteins. Annu. Rev. Biochem. 58:575–606; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Charbord, P.; Gown, A. M.; Keating, A., et al. CGA-7 and HHF, two monoclonal antibodies that recognize muscle actin and react with adherent cells in human long-term bone marrow cultures. Blood 66:1138–1142; 1985.

    PubMed  CAS  Google Scholar 

  • Dexter, T. M.; Allen, T. D.; Lajtha, L. G. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J. Cell. Physiol. 91:335–344; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Dionne, C. A.; Jaye, M.; Schlessinger, J. Structural diversity and binding of FGF receptors. Ann. NY Acad. Sci. 638:161–166; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Dorshkind, K. Regulation of hemopoiesis by bone marrow stromal cells and their products. Annu. Rev. Immunol. 8:111–137; 1990.

    PubMed  CAS  Google Scholar 

  • Drize, N. J.; Surin, V. L.; Gan, O. I., et al. Gene therapy model for stromal precursor cells of hematopoietic microenvironment. Leukemia 6:174S-175S; 1992.

    PubMed  Google Scholar 

  • Gartner, S.; Kaplan, H. S. Long-term culture of human bone marrow cells. Proc. Natl. Acad. Sci. USA 77:4756–4759; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Greenberger, J. S. Sensitivity of corticosteroid-dependent insulin-resistant lipogenesis in marrow preadipocytes of obese-diabetic (db/db) mice. Nature 275:752–754; 1978.

    Article  PubMed  CAS  Google Scholar 

  • Greenberger, J. S. Phenotypically distinct target cells for murine sarcoma virus and murine leukemia virus marrow transformation in vitro. J. Natl. Cancer. Inst. 62:337–348; 1979.

    PubMed  CAS  Google Scholar 

  • Greenberger, J. S.; Davisson, P. B.; Gans, P. J. Murine sarcoma viruses block corticosteroid-induced differentiation of bone marrow preadipocytes associated with long-term in vitro hemopoiesis. Virology 95:317–333; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Hauser, S. P.; Waldron, J. A.; Upuda, K. B., et al. Morphological characterization of stromal cell types in hematopoietically active long-term murine bone marrow cultures. J. Histochem. Cytochem. 43:371–379; 1995.

    PubMed  CAS  Google Scholar 

  • Hurwitz, D. R.; Hodges, R.; Drohan, W., et al. Optimizing gene expression in BPV-transformed cells: effects of cell type on enhancer/promoter interaction. Nucleic Acids Res. 15:7137–7153; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Huss, R.; Smith, F. O.; Myerson, D. H., et al. Homing and immunogenicity of murine stromal cells transfected with xenogeneic MHC class II genes. Cell Transplant. 4:483–491; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, D. E.; Williams, L. T. Structural and functional diversity in the FGF receptor multigene family. Adv. Cancer Res. 60:1–41; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, A.; Katoh, O.; Kuramoto, A. Effects of platelet derived growth factor, epidermal growth factor and transforming growth factor-beta on the growth of human marrow fibroblasts. Br. J. Haematol. 69:9–12; 1988.

    PubMed  CAS  Google Scholar 

  • Lazarus, H. M.; Haynesworth, S. E.; Gerson, S. L., et al. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant. 16:557–564; 1995.

    PubMed  CAS  Google Scholar 

  • Nolta, J. A.; Hanley, M. B.; Kohn, D. B. Sustained human hematopoiesis in immunodeficient mice by cotransplantation of marrow stroma expressing human interleukin-3: analysis of gene transduction of long-lived progenitors. Blood 83:3041–3051; 1994.

    PubMed  CAS  Google Scholar 

  • Oliver, L. J.; Rifkin, D. B.; Gabrilove, J., et al. Long-term culture of human bone marrow stromal cells in the presence of basic fibroblast growth factor. Growth Factors 3:231–236; 1990.

    PubMed  CAS  Google Scholar 

  • Pereira, R. F.; Halford, K. W.; Ohara, M. D., et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc. Natl. Acad. Sci. USA 92:4857–4861; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Sakakeeny, M. A.; Greenberger, J. S. Granulopoiesis longevity in continuous bone marrow cultures and factor-dependent cell line generation: significant variation among 28 inbred mouse strains and outbred stocks. J. Natl. Cancer Inst. 68:305–317; 1982.

    PubMed  CAS  Google Scholar 

  • Schmitz, B.; Thiele, J.; Kaufmann, R., et al. Megakaryocytes and fibroblasts—interactions as determined in normal human bone marrow specimens. Leukemia Res. 19:629–637; 1995.

    Article  CAS  Google Scholar 

  • Selden, R. F.; Howie, K. B.; Rowe, M. E., et al. Human growth hormone as a reporter gene in regulation studies employing transient gene expression. Mol. Cell. Biol. 6:3173–3179; 1986.

    PubMed  CAS  Google Scholar 

  • Tavassoli, M.; Friedenstein, A. Hemopoietic stromal microenvironment. Am. J. Hematol. 15:195–203; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Whitlock, C. A.; Witte, O. N. Long-term culture of B lymphocytes and their precursors from murine bone marrow. Proc. Natl. Acad. Sci. USA 79:3608–3612; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Wilkins, B. S.; Jones, D. B. Immunohistochemical characterization of intact stromal layers in long-term cultures of human bone marrow. Br. J. Haematol. 90:757–766; 1995.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emami, S., Merrill, W., Cherington, V. et al. Enhanced growth of canine bone marrow stromal cell cultures in the presence of acidic fibroblast growth factor and heparin. In Vitro Cell.Dev.Biol.-Animal 33, 503–511 (1997). https://doi.org/10.1007/s11626-997-0092-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-997-0092-4

Key words

Navigation