Skip to main content
Log in

The effects of human leukemia inhibitory factor (hLIF) and culture medium on in vitro differentiation of cultured porcine inner cell mass (pICM)

  • Genetics
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Isolation and maintenance of porcine embryonic stem (pES) cells have been hindered by the inability to inhibit differentiation of the porcine inner cell mass (pICM) in vitro. Culture conditions currently in use have been developed from mouse ES cell culture and are not effective for maintaining the pICM. Optimizing culture conditions for the pICM is essential. We have developed a grading system to detect changes in the differentiation status of in vitro cultured pICM. Porcine ICMs (Day 7) were isolated by immunosurgery and cultured for 4 d in either Dulbecco’s modified Eagle’s medium (DMEM)-based medium (D medium) or DMEM/Ham’s F-10 (1:1)-based medium (D/H medium) with or without human Leukemia Inhibitory Factor (hLIF, 1000 iu/ml). Colonies were photographed daily for morphological analysis. pICMs were categorized into one of two types based on their morphological profile: type A, nonepithelial or type B, epithelial-like. Eight investigators evaluated pICM differentiation using standardized differentiation profiles. Each pICM series was graded on a scale of 1 (fully undifferentiated) to 5 (fully differentiated) for each time point. Differentiation was verified by alkaline phosphatase activity, cytokeratin staining, and scanning electron microscopy. Neither hLIF nor culture medium delayed differentiation of pICMs (P=0.08 and P=0.25, respectively). The grading system employed was an effective tool for detecting treatment effects on differentiation of the developing pICM. These results demonstrate that hLIF cannot significantly inhibit differentiation of the pICM, and is unlikely to assist in porcine ES cell isolation. Future experiments utilizing homologous cytokines may prove more beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, G. B.; Choi, S. J.; BonDurant, R. H. Survival of porcine inner cell masses in culture and after injection into blastocysts. Theriogenology 42:204–212; 1994.

    Article  PubMed  CAS  Google Scholar 

  2. Borgers, M. The cytochemical application of new potent inhibitors of alkaline phosphatases. J. Histochem. Cytochem. 21:812–824; 1973.

    PubMed  CAS  Google Scholar 

  3. Bradley, A.; Evans, M.; Kaufman, M. H., et al. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309:255–256; 1984.

    Article  PubMed  CAS  Google Scholar 

  4. Dawes, C. J. Biological techniques for transmission and scanning electron microscopy. Burlington, VT: Ladd Research Industries, Inc.; 1984.

    Google Scholar 

  5. Doetschman, T. C.; Eistetter, H.; Katz, M., et al. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87:27–45; 1985.

    PubMed  CAS  Google Scholar 

  6. Doetschman, T.; Williams, P.; Maeda, N. Establishment of hamster blastocyst-derived embryonic stem (ES) cells. Dev. Biol. 127:224–227; 1988.

    Article  PubMed  CAS  Google Scholar 

  7. Donovan, P. J.; Stott, D.; Cairns, L. A., et al. Migratory and postmigratory mouse primordial germ cells behave differently in culture. Cell 44:831–838; 1986.

    Article  PubMed  CAS  Google Scholar 

  8. Evans, M. J.; Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156; 1981.

    Article  PubMed  CAS  Google Scholar 

  9. Evans, M. J.; Notarianni, E.; Laurie, S., et al. Derivation and preliminary characterization of pluripotent cell lines from porcine and bovine blastocysts. Theriogenology 33:125–128; 1990.

    Article  Google Scholar 

  10. Frohman, M. A.; Martin, G. R. Cut, paste and save: new approaches to altering specific genes in mice. Cell 56:145–147; 1989.

    Article  PubMed  CAS  Google Scholar 

  11. Gerfin, R. W.; Wheeler, M. B. Isolation of embryonic cell-lines from porcine blastocysts. Anim. Biotechnol. 6:1–14; 1995.

    Article  Google Scholar 

  12. Giles, J. R.; Yang, X.; Mark, W., et al. Pluripotency of cultured rabbit inner cell mass cells detected by isozyme analysis and eye pigmentation of fetuses following injection into blastocysts or morulae. Mol. Reprod. Dev. 36:130–138; 1993.

    Article  PubMed  CAS  Google Scholar 

  13. Gough, N. M.; Williams, R. L.; Hilton, D. J., et al. LIF: a molecule with divergent actions on myeloid leukaemic cells and embryonic stem cells. Reprod. Fertil. Dev. 1:281–288; 1989.

    Article  PubMed  CAS  Google Scholar 

  14. Handyside, A.; Hooper, M. L.; Kaufman, M. H., et al. Towards the isolation of embryonal stem cell lines from the sheep. Roux’s Arch. Dev. Biol. 196:185–190; 1987.

    Article  Google Scholar 

  15. Harlow, E.; Lane, D., Antibodies—a laboratory manual. Cold Spring Harbor, NY; Cold Spring Harbor Laboratory, 1988.

    Google Scholar 

  16. Iannaccone, P. M.; Taborn, G. U.; Garton, R. L., et al. Pluripotent embryonic stem cells from the rat are capable of producing chimeras. Dev. Biol. 163:288–292; 1994.

    Article  PubMed  CAS  Google Scholar 

  17. Koller, B. H.; Smithies, O. Altering genes in animals by gene targeting. Annu. Rev. Immunol. 10:705–730; 1992.

    Article  PubMed  CAS  Google Scholar 

  18. Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78:7634–7638; 1981.

    Article  PubMed  CAS  Google Scholar 

  19. Nichols, J.; Evans, E. P.; Smith, A. G. Establishment of germ-line-competent embryonic stem (ES) cells using differentiation inhibiting activity. Development 110:1341–1348; 1990.

    PubMed  CAS  Google Scholar 

  20. Niemann, H.; Illera, M. J.; Dzuik, P. J. Developmental capacity, size and number of nuclei in pig embryos cultured in vitro. Anim. Reprod. Sci. 5:311–321; 1983.

    Article  Google Scholar 

  21. Notarianni, E.; Laurie, S.; Moor, R. M., et al. Maintenance and differentiation in culture of pluripotential embryonic cell lines from pig blastocysts. J. Reprod. Fert. Suppl. 41:51–56; 1990.

    CAS  Google Scholar 

  22. Petters, R. M.; Wells, K. D. Culture of pig embryos. J. Reprod. Fertil. Suppl. 48:61–73; 1993.

    PubMed  CAS  Google Scholar 

  23. Piedrahita, J. A.; Anderson, G. B.; BonDurant, R. H. Influence of feeder layer type on the efficiency of isolation of porcine embryo-derived cell lines. Theriogenology 34:865–877; 1990a.

    Article  PubMed  CAS  Google Scholar 

  24. Piedrahita, J. A.; Anderson, G. B.; BonDurant, R. H. On the isolation of embryonic stem cells: comparative behavior of murine, porcine and ovine embryos. Theriogenology 34:879–901; 1990b.

    Article  PubMed  CAS  Google Scholar 

  25. Piedrahita, J. A.; Guillespie, L.; Maeda, N. Establishing an embryonic stem (ES) cell system utilizing hamster embryos. Biol. Reprod. Suppl. 42:175 (abstract); 1990c.

    Google Scholar 

  26. Piedrahita, J. A.; Zhang, S. H.; Hagaman, J. R., et al. Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc. Natl. Acad. Sci. USA 89:4471–4475; 1992.

    Article  PubMed  CAS  Google Scholar 

  27. Saito, S.; Strelchenko, N.; Niemann, H. Bovine embryonic stem cell-like cell lines cultured over several passages. Roux’s Arch. Dev. Biol. 201:134–141; 1992.

    Article  Google Scholar 

  28. Sims, M.; First, N. L. Production of calves by transfer of nuclei from cultured inner cell mass cells. Proc. Natl. Acad. Sci. USA 90:6143–6147; 1993.

    Article  Google Scholar 

  29. Smith, A. G.; Heath, J. K.; Donaldson, D. D., et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336:688–690; 1988.

    Article  PubMed  CAS  Google Scholar 

  30. Smith, A. G.; Hooper, M. L. Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells. Dev. Biol. 121:1–9; 1987.

    Article  PubMed  CAS  Google Scholar 

  31. Soulter, D.; Knowles, B. B. Immunosurgery of the mouse blastocyst. Proc. Natl. Acad. Sci. USA 72:5099–5102; 1975.

    Article  Google Scholar 

  32. Strelchenko, N.; Stice, S. Bovine embryonic pluripotent cell lines derived from morula stage embryos. Theriogenology 41:304 (abstract); 1994.

    Article  Google Scholar 

  33. Strojek, R. M.; Reed, M. A.; Hoover, J. L., et al. A method for cultivating morphologically undifferentiated embryonic stem cells from porcine blastocysts. Theriogenology 33:901–913; 1990.

    Article  PubMed  CAS  Google Scholar 

  34. Sukoyan, M. A.; Vatolin, S. Y.; Golubitsa, A. N., et al. Embryonic stem cells derived from morulae, inner cell mass and blastocysts of mink: comparisons of their pluripotencies. Mol. Reprod. Dev. 36:148–158; 1993.

    Article  PubMed  CAS  Google Scholar 

  35. Talbot, N. C.; Rexroad, C. E.; Pursel, V. G., et al. Culturing the epiblast of the pig blastocyst. In Vitro Cell. Dev. Biol. 29A:543–554; 1993.

    CAS  Google Scholar 

  36. Talbot, N. C.; Rexroad, C. E.; Pursel, V. G., et al. Alkaline phosphatase staining of pig and sheep epiblast cells in culture. Mol. Reprod. Dev. 36:139–147; 1993.

    Article  PubMed  CAS  Google Scholar 

  37. Thomson, J. A.; Kalishman, J.; Golos, T. G., et al. Isolation of a primate embryonic stem cell line. Proc. Natl. Acad. Sci. USA 92:7844–7848; 1995.

    Article  PubMed  CAS  Google Scholar 

  38. Wiles, M. V.; Keller, G. Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development 111:259–267; 1991.

    PubMed  CAS  Google Scholar 

  39. Wiley, L. M.; Spindle, A. I.; Pedersen, R. A. Morphology of isolated mouse inner cell masses developing in vitro. Dev. Biol. 63:1–10; 1978.

    Article  PubMed  CAS  Google Scholar 

  40. Williams, R. L.; Hilton, D. J.; Pease, S., et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336:684–687; 1988.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, K., Piedrahita, J.A. The effects of human leukemia inhibitory factor (hLIF) and culture medium on in vitro differentiation of cultured porcine inner cell mass (pICM). In Vitro Cell.Dev.Biol.-Animal 33, 62–71 (1997). https://doi.org/10.1007/s11626-997-0023-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-997-0023-4

Key words

Navigation