Skip to main content
Log in

Changes in gravity inhibit lymphocyte locomotion through type I collagen

  • Proceedings—Nasa Bioreactors Workshop On Regulation Cell And Tissue Differentiation
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Immunity relies on the circulation of lymphocytes through many different tissues including blood vessels, lymphatic channels, and lymphoid organs. The ability of lymphocytes to traverse the interstitium in both nonlymphoid and lymphoid tissues can be determined in vitro by assaying their capacity to locomote through Type I collagen. In an attempt to characterize potential causes of microgravity-induced immunosuppression, we investigated the effects of simulated microgravity on human lymphocyte function in vitro using a specialized rotating-wall vessel culture system developed at the Johnson Space Center. This very low shear culture system randomizes gravitational vectors and provides an in vitro approximation of microgravity. In the randomized gravity of the rotating-wall vessel culture system, peripheral blood lymphocytes did not locomote through Type I collagen, whereas static cultures supported normal movement. Although cells remained viable during the entire culture period, peripheral blood lymphocytes transferred to unit gravity (static culture) after 6 h in the rotating-wall vessel culture system were slow to recover and locomote into collagen matrix. After 72 h in the rotating-wall vessel culture system and an additional 72 h in static culture, peripheral blood lymphocytes did not recover their ability to locomote. Loss of locomotory activity in rotating-wall vessel cultures appears to be related to changes in the activation state of the lymphocytes and the expression of adhesion molecules. Culture in the rotating-wall vessel system blunted the ability of peripheral blood lymphocytes to respond to polyclonal activation with phytohemagglutinin. Locomotory response remained intact when peripheral blood lymphocytes were activated by anti-CD3 antibody and interleukin-2 prior to introduction into the rotating-wall vessel culture system. Thus, in addition to the systemic stress factors that may affect immunity, isolated lymphocytes respond to gravitational changes by ceasing locomotion through model interstitium. These in vitro investigations suggest that microgravity induces non-stress-related changes in cell function that may be critical to immunity. Preliminary analysis of locomotion in true microgravity revealed a substantial inhibition of cellular movement in Type I collagen. Thus, the rotating-wall vessel culture system provides a model for analyzing the microgravity-induced inhibition of lymphocyte locomotion and the investigation of the mechanisms related to lymphocyte movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applegate, K. G.; Balch, C. M.; Pellis, N. R. In vitro migration of lymphocytes through collagen matrix: arrested locomotion in tumor-infiltrating lymphocytes (TIL). Cancer Res. 50:7153–7158; 1990.

    PubMed  CAS  Google Scholar 

  2. Barone, R. B.; Caren, L. D. The immune system: effects of hypergravity and hypogravity. Aviat. Space Environ. Med. 55:1063–1068; 1984.

    PubMed  CAS  Google Scholar 

  3. Bechler, B.; Cogoli, A.; Mesland, D. Lymphozyten sind Schwerkraftempfindlich. Naturwissenschaften 73:400–403; 1986.

    Article  PubMed  CAS  Google Scholar 

  4. Becker, J. L.; Prewett, T. L.; Spaulding, G. F., et al. Three dimensional growth and differentiation of ovarian tumor cell line in high aspect rotating-wall vessel: morphologic and embryologic considerations. J. Cell. Biochem. 51:283–289; 1993.

    Article  PubMed  CAS  Google Scholar 

  5. Bednarczyk, J. L.; McIntyre, B. W. A monoclonal antibody to VLA-4 a-chain (CDw49d) induces homotypic lymphocyte aggregation. J. Immunol. 144:777–784; 1990.

    PubMed  CAS  Google Scholar 

  6. Bednarczyk, J. L.; Wygant, J. N.; Szabo, M. C., et al. Homotypic leukocyte aggregation triggered by a monoclonal antibody specific for a novel epitope expressed by the integrin beta 1 subunit: conversion of nonresponsive cells by transfecting human integrin alpha 4 subunit cDNA. J. Cell. Biochem. 51:465–478; 1993.

    PubMed  CAS  Google Scholar 

  7. Berry, W. D.; Murphy, J. D.; Smith, B. A., et al. Effect of microgravity modeling on interferon and interleukin responses in the rat. J. Interferon Res. 11:243–249; 1991.

    PubMed  CAS  Google Scholar 

  8. Campanero, M. R.; Pulido, R.; Ursa, M. A., et al. An alternative leukocyte homotypic adhesion mechanism LFA1/ICAM-1-independent, triggered through the human VLA-4 integrin. J. Cell Biol. 110:2157–2165; 1990.

    Article  PubMed  CAS  Google Scholar 

  9. Cogoli, A. Hematological and immunological changes during space flight. Acta Astronaut. 8:995–1002; 1981.

    Article  PubMed  CAS  Google Scholar 

  10. Cogoli, A.; Tschopp, A.; Fuschs-Bislin, P. Cell sensitivity to gravity. Science 225:228–230; 1984.

    Article  PubMed  CAS  Google Scholar 

  11. Durnova, G. N.; Kaplansky, A. S.; Portugalov, V. V. Effect of a 22 day space flight on the lymphoid organs of rats. Aviat. Space Environ. Med. 47:488–591; 1976.

    Google Scholar 

  12. Gmunder, F.-K.; Lorenzi, G.; Bechler, B., et al. Effect of long-term physical exercise on lymphocyte reactivity: similarity to space-flight reactions. Aviat. Space Environ. Med. 59:46–151; 1988.

    Google Scholar 

  13. Goodwin, T. J.; Jessup, J. M.; Wolf, D. A. Morphological differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels. In Vitro Cell. Dev. Biol. 28A:47–60; 1992.

    PubMed  CAS  Google Scholar 

  14. Goodwin T. J.; Prewett, T. L.; Wolf, D. A., et al. Reduced shear stress: a major component in the ability of mammalian tissues to form 3-dimensional assemblies in simulated microgravity. J. Cell. Biochem. 51:301–311; 1993.

    Article  PubMed  CAS  Google Scholar 

  15. Goodwin, T. J.; Schroeder, W. F.; Wolf, D. A., et al. Rotating-wall vessel coculture of small intestine as a prelude to tissue modeling: aspects of simulated microgravity. Proc. Soc. Exp. Biol. Med. 202:181–192; 1993.

    PubMed  CAS  Google Scholar 

  16. Gould, C. L.; Lyte, M.; Williams, J. A., et al. Inhibited interferon- but normal IL-3 production from rats flown on the space shuttle. Aviat. Space Environ. Med. 58:983–986; 1987.

    PubMed  CAS  Google Scholar 

  17. Gutman, H.; Risin, D.; Katz, B. P., et al. Locomotion through three-dimensional type I rat tail collagen: a modified mini-assay. J. Immunol. Methods 157:175–180; 1993.

    Article  PubMed  CAS  Google Scholar 

  18. Hansen, M.; Nielsen, S.; Berg, K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 119:203–210; 1989.

    Article  PubMed  CAS  Google Scholar 

  19. Hemler, M. E. VLA proteins in the integrin family: structures, functions, and their role on leukocytes. Annu. Rev. Immunol. 8:365–400; 1990.

    Article  PubMed  CAS  Google Scholar 

  20. Jessup, J. M.; Goodwin, T. J.; Spaulding, G. F. Prospects for use of microgravity-based bioreactors to study three-dimensional host-tumor interactions in human neoplasia. J. Cell. Biochem. 51:290–300; 1993.

    Article  PubMed  CAS  Google Scholar 

  21. Konstantinova, I. V.; Antropova, E. N.; Rykova, M. P., et al. Cellular and humoral immunity in cosmonauts with the effect of space flight factors. Vestn. Akad. Med. Nauk SSSR 8:52–58; 1985.

    Google Scholar 

  22. Konstantinova, I. V.; Rykova, M. P.; Lesnyak, A. T., et al. Immune changes during long-duration missions. J. Leukocyte Biol. 54:189–201; 1993.

    PubMed  CAS  Google Scholar 

  23. Lesnyak, A. T.; Tashpulatov, R. Y. Effects of space flight on lymphocyte blast transformation in cosmonauts’ peripheral blood. Kosm Biol. Med. (Space Biology) 1:51–58; 1981.

    Google Scholar 

  24. Masuyama, J.-I.; Berman, J. S.; Cruikshank, W. W., et al. Evidence for recent as well as long term activation of T cells migrating through endothelial cell monolayers in vitro. J. Immunol. 148:1367–1374; 1992.

    PubMed  CAS  Google Scholar 

  25. Meehan, R. T. Human mononuclear cell in vitro activation in microgravity and post-spaceflight. Adv. Exp. Med. Biol. 225:273–286; 1987.

    PubMed  CAS  Google Scholar 

  26. Piazza, G. A.; Callanan, H. M.; Mowery, J., et al. Evidence for a role of dipeptidyl peptidase IV in fibronectin-mediated interactions of hepatocytes with extracellular matrix. Biochem. J. 262:327–334; 1989.

    PubMed  CAS  Google Scholar 

  27. Ratner, S.; Heppner, G. T cell locomotion in the tumor microenvironment: I. a collagen matrix assay. J. Immunol. 135:2220–2227; 1985.

    PubMed  CAS  Google Scholar 

  28. Ratner, S.; Heppner, G. H. Motility and tumoricidal activity of interleukin-2-stimulated lymphocytes. Cancer Res. 48:3374–3380; 1988.

    PubMed  CAS  Google Scholar 

  29. Ratner, S.; Jasti, R. K.; Heppner, G. H. Motility of murine lymphocytes during transit through cell cycle: analysis by a new in vitro assay. J. Immunol. 140:583–588; 1988.

    PubMed  CAS  Google Scholar 

  30. Shui, W.; Schor, S. Quantitative study of various factors influencing the migration of lymphocytes in vitro: glucocortico-steroid, PHA, Cyclosporin A and heparin. Cell Biol. Int. Rep. 11(3):171–180; 1987.

    Article  Google Scholar 

  31. Sonnenfeld, G.; Mandel, A. D.; Konstantinova, I. V., et al. Effects of space flight on levels and activity of immune cells. Aviat. Space Environ. Med. 61:648–653; 1990.

    PubMed  CAS  Google Scholar 

  32. Sonnenfeld, G.; Miller, E. S. The role of cytokines in immune changes induced by space flight. J. Leukocyte Biol. 54:253–258; 1993.

    PubMed  CAS  Google Scholar 

  33. Spaulding, G. F.; Jessup, J. M.; Goodwin, T. J. Advances in bioreactor cell culture technology. J. Cell. Biochem. 51:249–251; 1993.

    Article  PubMed  CAS  Google Scholar 

  34. Stewards, R. P.; Goodwin, T. J.; Wolf, D. A. Cell culture for three-dimensional modeling in rotating-wall vessels: an application in microgravity. J. Tissue Cult. Methods 14(2):51–58; 1992.

    Article  Google Scholar 

  35. Stoolman, L. M. Adhesion molecules controlling lymphocyte migration. Cell 56:907–910; 1989.

    Article  PubMed  CAS  Google Scholar 

  36. Takada, Y.; Hemler, M. E. The primary structure of the VLA-2/collagen receptor alpha-2 subunit: homology to other integrins and the presence of a possible collagen binding domain. J. Cell Biol. 109:397–407; 1989.

    Article  PubMed  CAS  Google Scholar 

  37. Talas, M.; Batkai, L.; Stoger, I., et al. Results of the space experimental program “Interferon” I production of interferon in vitro by human lymphocytes aboard space laboratory Solyut-6 (“Interferon III”). Acta Microbiol. Acad. Sci. Hung. 30:53–61; 1983.

    CAS  Google Scholar 

  38. Talas, M.; Batkai, L.; Stoger, I., et al. Results of the space experiments program “Interferon.” Acta Astronaut. 11:379–386; 1984.

    Article  PubMed  CAS  Google Scholar 

  39. Taylor, G. R.; Dardano, J. R. US/USSR space biology and medicine: human cellular immune responsiveness following space flight. Aviat. Space Environ. Med. 54 (Suppl. I):S55-S59; 1983.

    PubMed  CAS  Google Scholar 

  40. Taylor, G. R. Overview of space-flight immunology studies. J. Leukocyte Biol. 54:179–188; 1993.

    PubMed  CAS  Google Scholar 

  41. Taylor, G. R. Immune changes during short-duration missions. J. Leukocyte Biol. 54:202–208; 1993.

    PubMed  CAS  Google Scholar 

  42. Taylor, G. R.; Neale, L. S.; Dardano, J. R. Immunological analysis of U.S. space shuttle crew members. Aviat. Space Environ. Med. 57:213–217; 1986.

    PubMed  CAS  Google Scholar 

  43. Tsao, T. D.; Goodwin, T. J.; Wolf, D. A., et al. Responses of gravity level variations on the NASA/JSC bioreactor system. Physiologist 35(1):49–50; 1992.

    Google Scholar 

  44. Woessner, J. The determination of hydroxyproline in tissue and protein samples containing small proportions of this amino acid. Arch. Biochem. Biophys. 93:440–447; 1961.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellis, N.R., Goodwin, T.J., Risin, D. et al. Changes in gravity inhibit lymphocyte locomotion through type I collagen. In Vitro Cell.Dev.Biol.-Animal 33, 398–405 (1997). https://doi.org/10.1007/s11626-997-0012-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-997-0012-7

Key words

Navigation