Skip to main content
Log in

A novel culture morphology resulting from applied mechanical strain

  • Proceedings—Nasa Bioreactors Workshop On Regulation Cell And Tissue Differentiation
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

To demonstrate that cells both perceive and respond to external force, a strain/relaxation regimen was applied to normal human fetal and aged dermal fibroblasts cultured as monolayers on flexible membranes. The precisely controlled protocol of stretch (20% elongation of the culture membrane) at 6.67 cycles/min caused a progressive change in the monolayers, such that the original randomly distributed pattern of cells became a symmetric, radial distribution as the cell bodies aligned parallel to the applied force. High cell density interfered with the success of re-alignment in the fetal cell cultures observed, which may reflect a preference in this cell strain for cell-cell over cell-matrix contacts. The chronologically aged cells observed did not demonstrate this feature, aligning efficiently at all seeding densities examined. The role of microfilaments in force perception and transmission was investigated through the addition of cytochalasin D in graded doses. Both intercellular interactions and cytoskeletal integrity mediate the morphological response to mechanical strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banes, A. J.; Link, G. W.; Bevin, A., et al. Tendon synovial cells secrete fibronectin in vivo and in vitro. J. Orthop. Res. 6:73–82; 1988.

    Article  PubMed  CAS  Google Scholar 

  2. Banes, A. J.; Link, G. W.; Gilbert, J. W., et al. Culturing cells in a mechanically active environment. Am. Biotechnol. Lab. 8:12–22; 1990.

    PubMed  CAS  Google Scholar 

  3. Brunette, D. M. Mechanical stretching increases the number of epithelial cells synthesizing DNA in culture. J. Cell Sci. 69:35–45; 1984.

    PubMed  CAS  Google Scholar 

  4. Buckley, M. J.; Banes, A. J.; Jordan, R. Effects of mechanical strain on osteoblasts in vitro. J. Oral Maxillofac. Surg. 48:276–282; 1990.

    Article  PubMed  CAS  Google Scholar 

  5. Buckley, M. J.; Banes, A. J.; Levin, L. G., et al. Osteoblasts increase their rate of division and align in response to cyclic, mechanical tension in vitro. Bone Miner. 4:225–236; 1988.

    PubMed  CAS  Google Scholar 

  6. Cooper, J. A. Effects of cytochalasin and phalloidin on actin. J. Cell Biol. 105:1473–1478; 1987.

    Article  PubMed  CAS  Google Scholar 

  7. Dartsch, P. C.; Hammerle, H. Orientation response of arterial smooth muscle cells to mechanical stimulation. Eur. J. Cell Biol. 41:339–346; 1986.

    PubMed  CAS  Google Scholar 

  8. Flickinger, K. S.; Carter, W. G.; Culp, L. A. Deficiency in integrin-mediated transmembrane signaling and microfilament stress fiber formation by aging dermal fibroblasts from normal and Down’s syndrome patients. Exp. Cell Res. 203:466–475; 1992.

    Article  PubMed  CAS  Google Scholar 

  9. Ingber, D. E. The riddle of morphogenesis: a question of solution chemistry or molecular cell engineering. Cell 75:1249–1252; 1993.

    Article  PubMed  CAS  Google Scholar 

  10. Ives, C. L.; Eskin, S. G.; McIntire, L. V. Mechanical effects on endothelial cell morphology: in vitro assessment. In Vitro Cell Devel. Biol. 22:500–507; 1986.

    Article  CAS  Google Scholar 

  11. Janmey, P. A.; Hvidt, S.; Oster, G. F., et al. Effect of ATP on actin filament stiffness. Nature 347:95–99; 1990.

    Article  PubMed  CAS  Google Scholar 

  12. Komuro, I.; Katoh, Y.; Kaida, T., et al. Mechanical loading stimulates cell hypertrophy and specific gene expression in cultured rat cardiac myocytes. J. Biol. Chem. 266:1265–1268; 1991.

    PubMed  CAS  Google Scholar 

  13. Levesque, M. J.; Nerem, R. M. The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 176:341–347; 1985.

    Article  Google Scholar 

  14. Norwood, T.; Smith, J.; Stein, G. H. Aging at the cellular level: the human fibroblast cell model. In: Schneider, E. L.; Rowe, J. W., eds. Handbook of the biology of aging. San Diego: Academic Press; 1990:131–154.

    Google Scholar 

  15. Rittling, S. R.; Brooks, K. M.; Cristofalo, V. J., et al. Expression of cell cycle-dependent genes in young and senescent WI-38 fibroblasts. Proc. Natl. Acad. Sci. USA 83:3316–3320; 1986.

    Article  PubMed  CAS  Google Scholar 

  16. Shirinsky, V. P.; Antonov, A. S.; Birukov, K. G., et al. Mechano-chemical control of human endothelial orientation and size. J. Cell Biol. 109:331–339; 1989.

    Article  PubMed  CAS  Google Scholar 

  17. Thweatt, R.; Murano, S.; Fleischmann, R. D., et al. Isolation and characterization of gene sequences overexpressed in Werner syndrome fibroblasts during premature replicative senescence. Exp. Gerontol. 27:433–440; 1992.

    Article  PubMed  CAS  Google Scholar 

  18. Tran-Son-Tay, R. Techniques for studying the effects of physical forces on mammalian cells and measuring cell mechanical properties. In: Frangos, J. A., ed. Physical forces and the mammalian cell. New York: Harcourt Brace Jovanovich; 1993:1–59.

    Google Scholar 

  19. Vandenburgh, H. H. Dynamic mechanical orientation of skeletal myofibers in vitro. Dev. Biol. 93: -; 1982.

  20. Vandenburgh, H. Mechanical forces and their second messengers in stimulating cell growth in vitro. Am. J. Physiol. 262:R350-R355; 1992.

    PubMed  CAS  Google Scholar 

  21. Wang, N.; Butler, J. P.; Ingber, D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127; 1993.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grymes, R.A., Sawyer, C. A novel culture morphology resulting from applied mechanical strain. In Vitro Cell.Dev.Biol.-Animal 33, 392–397 (1997). https://doi.org/10.1007/s11626-997-0011-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-997-0011-8

Key words

Navigation