Skip to main content
Log in

Characteristics of nuclear architectural abnormalities of myotubes differentiated from LmnaH222P/H222P skeletal muscle cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The presence of nuclear architectural abnormalities is a hallmark of the nuclear envelopathies, which are a group of diseases caused by mutations in genes encoding nuclear envelope proteins. Mutations in the lamin A/C gene cause several diseases, named laminopathies, including muscular dystrophies, progeria syndromes, and lipodystrophy. A mouse model carrying with the LmnaH222P/H222P mutation (H222P) was shown to develop severe cardiomyopathy but only mild skeletal myopathy, although abnormal nuclei were observed in their striated muscle. In this report, we analyzed the abnormal-shaped nuclei in myoblasts and myotubes isolated from skeletal muscle of H222P mice, and evaluated the expression of nuclear envelope proteins in these abnormal myonuclei. Primary skeletal muscle cells from H222P mice proliferated and efficiently differentiated into myotubes in vitro, similarly to those from wild-type mice. During cell proliferation, few abnormal-shaped nuclei were detected; however, numerous markedly abnormal myonuclei were observed in myotubes from H222P mice on days 5 and 7 of differentiation. Time-lapse observation demonstrated that myonuclei with a normal shape maintained their normal shape, whereas abnormal-shaped myonuclei remained abnormal for at least 48 h during differentiation. Among the abnormal-shaped myonuclei, 65% had a bleb with a string structure, and 35% were severely deformed. The area and nuclear contents of the nuclear blebs were relatively stable, whereas the myocytes with nuclear blebs were actively fused within primary myotubes. Although myonuclei were markedly deformed, the deposition of DNA damage marker (γH2AX) or apoptotic marker staining was rarely observed. Localizations of lamin A/C and emerin were maintained within the blebs, strings, and severely deformed regions of myonuclei; however, lamin B1, nesprin-1, and a nuclear pore complex protein were absent in these abnormal regions. These results demonstrate that nuclear membranes from H222P skeletal muscle cells do not rupture and are resistant to DNA damage, despite these marked morphological changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

Data Availability

The original data presented in the study are included in the article. Further inquiries can be directed to the corresponding author.

References

  • Abe T, Takano K, Suzuki A, Shimada Y, Inagaki M, Sato N, Obinata T, Endo T (2004) Myocyte differentiation generates nuclear invaginations traversed by myofibrils associating with sarcomeric protein mrnas. J Cell Sci 117(Pt 26):6523–6534

    Article  CAS  PubMed  Google Scholar 

  • Arimura T, Helbling-Leclerc A, Massart C, Varnous S, Niel F, Lacène E, Fromes Y, Toussaint M, Mura AM, Keller DI et al (2005) Mouse model carrying h222p-lmna mutation develops muscular dystrophy and dilated cardiomyopathy similar to human striated muscle laminopathies. Hum Mol Genet 14(1):155–169

    Article  CAS  PubMed  Google Scholar 

  • Bertrand AT, Ziaei S, Ehret C, Duchemin H, Mamchaoui K, Bigot A, Mayer M, Quijano-Roy S, Desguerre I, Lainé J et al (2014) Cellular microenvironments reveal defective mechanosensing responses and elevated yap signaling in lmna-mutated muscle precursors. J Cell Sci 127(Pt 13):2873–2884

    CAS  PubMed  Google Scholar 

  • Bione S, Maestrini E, Rivella S, Mancini M, Regis S, Romeo G, Toniolo D (1994) Identification of a novel x-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet 8(4):323–327

    Article  CAS  PubMed  Google Scholar 

  • Bonne G, Di Barletta MR, Varnous S, Bécane HM, Hammouda EH, Merlini L, Muntoni F, Greenberg CR, Gary F, Urtizberea JA et al (1999) Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 21(3):285–288

    Article  CAS  PubMed  Google Scholar 

  • Brull A, Morales Rodriguez B, Bonne G, Muchir A, Bertrand AT (2018) The pathogenesis and therapies of striated muscle laminopathies. Front Physiol 9:1533

    Article  PubMed  PubMed Central  Google Scholar 

  • Burke B, Stewart CL (2006) The laminopathies: the functional architecture of the nucleus and its contribution to disease. Annu Rev Genomics Hum Genet 7:369–405

    Article  CAS  PubMed  Google Scholar 

  • Burke B, Stewart CL (2013) The nuclear lamins: flexibility in function. Nat Rev Mol Cell Biol 14(1):13–24

    Article  CAS  PubMed  Google Scholar 

  • Davidson PM, Fedorchak GR, Mondésert-Deveraux S, Bell ES, Isermann P, Aubry D, Allena R, Lammerding J (2019) High-throughput microfluidic micropipette aspiration device to probe time-scale dependent nuclear mechanics in intact cells. Lab Chip 19(21):3652–3663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Vos WH, Houben F, Hoebe RA, Hennekam R, van Engelen B, Manders EM, Ramaekers FC, Broers JL, Van Oostveldt P (2010) Increased plasticity of the nuclear envelope and hypermobility of telomeres due to the loss of A-type lamins. Biochim Biophys Acta 1800(4):448–458

    Article  PubMed  Google Scholar 

  • Dou Z, Ghosh K, Vizioli MG, Zhu J, Sen P, Wangensteen KJ, Simithy J, Lan Y, Lin Y, Zhou Z et al (2017) Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550(7676):402–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Earle AJ, Kirby TJ, Fedorchak GR, Isermann P, Patel J, Iruvanti S, Moore SA, Bonne G, Wallrath LL, Lammerding J (2020) Mutant lamins cause nuclear envelope rupture and DNA damage in skeletal muscle cells. Nat Mater 19(4):464–473

    Article  CAS  PubMed  Google Scholar 

  • Emery AE, Dreifuss FE (1966) Unusual type of benign x-linked muscular dystrophy. J Neurol Neurosurg Psychiatry 29(4):338–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fidziańska A, Hausmanowa-Petrusewicz I (2003) Architectural abnormalities in muscle nuclei. Ultrastructural differences between x-linked and autosomal dominant forms of edmd. J Neurol Sci. 210(1–2):47–51

    Article  PubMed  Google Scholar 

  • Fidziańska A, Toniolo D, Hausmanowa-Petrusewicz I (1998) Ultrastructural abnormality of sarcolemmal nuclei in Emery-Dreifuss muscular dystrophy (edmd). J Neurol Sci 159(1):88–93

    Article  PubMed  Google Scholar 

  • Gerbino A, Procino G, Svelto M, Carmosino M (2018) Role of lamin A/C gene mutations in the signaling defects leading to cardiomyopathies. Front Physiol 9:1356

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Suarez I, Redwood AB, Gonzalo S (2009) Loss of A-type lamins and genomic instability. Cell Cycle 8(23):3860–3865

    Article  CAS  PubMed  Google Scholar 

  • Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W, Eussen BH, de Klein A, Wessels L, de Laat W et al (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453(7197):948–951

    Article  CAS  PubMed  Google Scholar 

  • Guilluy C, Osborne LD, Van Landeghem L, Sharek L, Superfine R, Garcia-Mata R, Burridge K (2014) Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat Cell Biol 16(4):376–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi YK (2022) Nuclear envelope myopathy. Neurol Clin Neurosci 10(6):298–303

    Article  Google Scholar 

  • Hayashi YK, Tezak Z, Momoi T, Nonaka I, Garcia CA, Hoffman EP, Arahata K (2001) Massive muscle cell degeneration in the early stage of merosin-deficient congenital muscular dystrophy. Neuromuscul Disord 11(4):350–359

    Article  CAS  PubMed  Google Scholar 

  • Kronenberg-Tenga R, Tatli M, Eibauer M, Wu W, Shin JY, Bonne G, Worman HJ, Medalia O (2021) A lamin a/c variant causing striated muscle disease provides insights into filament organization. J Cell Sci. 134(6):jcs256156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruiswijk F, Labuschagne CF, Vousden KH (2015) P53 in survival, death and metabolic health: A lifeguard with a licence to kill. Nat Rev Mol Cell Biol 16(7):393–405

    Article  CAS  PubMed  Google Scholar 

  • Kuang S, Kuroda K, Le Grand F, Rudnicki MA (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129(5):999–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon M, Leibowitz ML, Lee JH (2020) Small but mighty: the causes and consequences of micronucleus rupture. Exp Mol Med 52(11):1777–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lammerding J, Hsiao J, Schulze PC, Kozlov S, Stewart CL, Lee RT (2005) Abnormal nuclear shape and impaired mechanotransduction in emerin-deficient cells. J Cell Biol 170(5):781–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin F, Blake DL, Callebaut I, Skerjanc IS, Holmer L, McBurney MW, Paulin-Levasseur M, Worman HJ (2000) Man1, an inner nuclear membrane protein that shares the lem domain with lamina-associated polypeptide 2 and emerin. J Biol Chem 275(7):4840–4847

    Article  CAS  PubMed  Google Scholar 

  • Maffioletti SM, Sarcar S, Henderson ABH, Mannhardt I, Pinton L, Moyle LA, Steele-Stallard H, Cappellari O, Wells KE, Ferrari G et al (2018) Three-dimensional human ipsc-derived artificial skeletal muscles model muscular dystrophies and enable multilineage tissue engineering. Cell Rep 23(3):899–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motohashi N, Asakura Y, Asakura A (2014) Isolation, culture, and transplantation of muscle satellite cells. J Vis Exp 86:50846

    Google Scholar 

  • Muchir A, Kim YJ, Reilly SA, Wu W, Choi JC, Worman HJ (2013) Inhibition of extracellular signal-regulated kinase 1/2 signaling has beneficial effects on skeletal muscle in a mouse model of Emery-Dreifuss muscular dystrophy caused by lamin a/c gene mutation. Skelet Muscle 3(1):17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagano A, Koga R, Ogawa M, Kurano Y, Kawada J, Okada R, Hayashi YK, Tsukahara T, Arahata K (1996) Emerin deficiency at the nuclear membrane in patients with emery-dreifuss muscular dystrophy. Nat Genet 12(3):254–259

    Article  CAS  PubMed  Google Scholar 

  • Nmezi B, Xu J, Fu R, Armiger TJ, Rodriguez-Bey G, Powell JS, Ma H, Sullivan M, Tu Y, Chen NY et al (2019) Concentric organization of A- and B-type lamins predicts their distinct roles in the spatial organization and stability of the nuclear lamina. Proc Natl Acad Sci U S A 116(10):4307–4315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park YE, Hayashi YK, Goto K, Komaki H, Hayashi Y, Inuzuka T, Noguchi S, Nonaka I, Nishino I (2009) Nuclear changes in skeletal muscle extend to satellite cells in autosomal dominant Emery-Dreifuss muscular dystrophy/limb-girdle muscular dystrophy 1b. Neuromuscul Disord 19(1):29–36

    Article  PubMed  Google Scholar 

  • Raffaele Di Barletta M, Ricci E, Galluzzi G, Tonali P, Mora M, Morandi L, Romorini A, Voit T, Orstavik KH, Merlini L et al (2000) Different mutations in the lmna gene cause autosomal dominant and autosomal recessive Emery-Dreifuss muscular dystrophy. Am J Hum Genet 66(4):1407–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowat AC, Lammerding J, Ipsen JH (2006) Mechanical properties of the cell nucleus and the effect of emerin deficiency. Biophys J 91(12):4649–4664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM (2008) Self-renewal and expansion of single transplanted muscle stem cells. Nature 456(7221):502–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schöfer C, Weipoltshammer K (2018) Nucleolus and chromatin. Histochem Cell Biol 150(3):209–225

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz LM (2018) Skeletal muscles do not undergo apoptosis during either atrophy or programmed cell death-revisiting the myonuclear domain hypothesis. Front Physiol 9:1887

    Article  PubMed  Google Scholar 

  • Shahini A, Vydiam K, Choudhury D, Rajabian N, Nguyen T, Lei P, Andreadis ST (2018) Efficient and high yield isolation of myoblasts from skeletal muscle. Stem Cell Res 30:122–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimi T, Kittisopikul M, Tran J, Goldman AE, Adam SA, Zheng Y, Jaqaman K, Goldman RD (2015) Structural organization of nuclear lamins A, C, B1, and B2 revealed by superresolution microscopy. Mol Biol Cell 26(22):4075–4086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimojima M, Yuasa S, Motoda C, Yozu G, Nagai T, Ito S, Lachmann M, Kashimura S, Takei M, Kusumoto D et al (2017) Emerin plays a crucial role in nuclear invagination and in the nuclear calcium transient. Sci Rep 7:44312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiokawa D, Kobayashi T, Tanuma S (2002) Involvement of dnase gamma in apoptosis associated with myogenic differentiation of c2c12 cells. J Biol Chem 277(34):31031–31037

    Article  CAS  PubMed  Google Scholar 

  • Spencer MJ, Walsh CM, Dorshkind KA, Rodriguez EM, Tidball JG (1997) Myonuclear apoptosis in dystrophic mdx muscle occurs by perforin-mediated cytotoxicity. J Clin Invest 99(11):2745–2751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steele-Stallard HB, Pinton L, Sarcar S, Ozdemir T, Maffioletti SM, Zammit PS, Tedesco FS (2018) Modeling skeletal muscle laminopathies using human induced pluripotent stem cells carrying pathogenic. Front Physiol 9:1332

    Article  PubMed  PubMed Central  Google Scholar 

  • Sudo M, Kano Y (2009) Myofiber apoptosis occurs in the inflammation and regeneration phase following eccentric contractions in rats. J Physiol Sci 59(6):405–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N, Nagashima K, Stewart CL, Burke B (1999) Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 147(5):913–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vignier N, Chatzifrangkeskou M, Pinton L, Wioland H, Marais T, Lemaitre M, Le Dour C, Peccate C, Cardoso D, Schmitt A et al (2021) The non-muscle adf/cofilin-1 controls sarcomeric actin filament integrity and force production in striated muscle laminopathies. Cell Rep 36(8):109601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada E, Kato M, Yamashita K, Kokuba H, Liang WC, Bonne G, Hayashi YK (2019) Deficiency of emerin contributes differently to the pathogenesis of skeletal and cardiac muscles in lmnah222p/h222p mutant mice. PLoS ONE 14(8):e0221512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada E, Matsumoto K, Susumu N, Kato M, Hayashi YK (2023) Emerin deficiency does not exacerbate cardiomyopathy in a murine model of Emery-Dreifuss muscular dystrophy caused by an lmna gene mutation. J Physiol Sci 73(1):27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worman HJ, Bonne G (2007) “Laminopathies”: a wide spectrum of human diseases. Exp Cell Res 313(10):2121–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yorifuji H, Tadano Y, Tsuchiya Y, Ogawa M, Goto K, Umetani A, Asaka Y, Arahata K (1997) Emerin, deficiency of which causes Emery-Dreifuss muscular dystrophy, is localized at the inner nuclear membrane. Neurogenetics 1(2):135–140

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka K, Kitajima Y, Okazaki N, Chiba K, Yonekura A, Ono Y (2020) A modified pre-plating method for high-yield and high-purity muscle stem cell isolation from human/mouse skeletal muscle tissues. Front Cell Dev Biol 8:793

    Article  PubMed  PubMed Central  Google Scholar 

  • Young AM, Gunn AL, Hatch EM (2020) Baf facilitates interphase nuclear membrane repair through recruitment of nuclear transmembrane proteins. Mol Biol Cell 31(15):1551–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mr. Keita Neishi (KEYENCE) for technical assistance with the time-lapse imaging using the BZ-X810 microscope, Dr. Gisèle Bonne (Center of Research in Myology, France) for providing the original LmnaH222P/H222P mutant mice, Dr. Helena Popiel (Tokyo Medical University) for editing the manuscript, and National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP) (Japan) for providing the lamin A (M52-1) and C (M53-1) antibodies.

Funding

This work was financially supported in part by Grants-in-Aid for Scientific Research (B) from the Japanese Ministry of Education, Culture, Sports, Science and Technology (KAKENHI) (20H03594), Acceleration Program for Intractable Disease Research Utilizing Disease-specific iPS cells (17935395), and Practical Research Project for Rare/Intractable Diseases (23809381) from the Japan Agency for Medical Research and Development, Intramural Research Grant for Neurological and Psychiatric Disorders of NCNP (29–4, 2–5, and 5–6), and Follow-up Grant from Tokyo Medical University (2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukiko K. Hayashi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wada, E., Susumu, N., Kaya, M. et al. Characteristics of nuclear architectural abnormalities of myotubes differentiated from LmnaH222P/H222P skeletal muscle cells. In Vitro Cell.Dev.Biol.-Animal (2024). https://doi.org/10.1007/s11626-024-00915-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11626-024-00915-1

Keywords

Navigation