Skip to main content
Log in

Human embryonic stem cells maintain their stemness in three-dimensional microenvironment

  • Report
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Data availability

The data that support the findings of this study are available from the corresponding author upon a reasonable request.

References

  • Abbas Y, Carnicer-Lombarte A, Gardner L, Thomas J, Brosens JJ, Moffett A, Sharkey AM, Franze K, Burton GJ, Oyen ML (2019) Tissue stiffness at the human maternal–fetal interface. Hum Reprod 34(10):1999–2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abraham S, Riggs MJ, Nelson K, Lee V, Rao RR (2010) Characterization of human fibroblast-derived extracellular matrix components for human pluripotent stem cell propagation. Acta Biomater 6(12):4622–4633

    Article  CAS  PubMed  Google Scholar 

  • Amit M, Chebath J, Margulets V, Laevsky I, Miropolsky Y, Shariki K, Peri M, Blais I, Slutsky G, Revel M, Itskovitz-Eldor J (2010) Suspension culture of undifferentiated human embryonic and induced pluripotent stem cells. Stem Cell Rev Rep 6:248–259

    Article  PubMed  Google Scholar 

  • Caliari SR, Vega SL, Kwon M, Soulas EM, Burdick JA (2016) Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments. Biomaterials 103:314–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Candiello J, Singh SS, Task K, Kumta PN, Banerjee I (2013) Early differentiation patterning of mouse embryonic stem cells in response to variations in alginate substrate stiffness. J Biol Eng 7(1):1–14

    Article  Google Scholar 

  • Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE, Wagner R, Lee GO, Antosiewicz-Bourget J, Teng JM, Thomson JA (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8(5):424–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen VC, Couture SM, Ye J, Lin Z, Hua G, Huang HIP, Wu J, Hsu D, Carpenter MK, Couture LA (2012) Scalable GMP compliant suspension culture system for human ES cells. Stem Cell Res 8(3):388–402

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury F, Li Y, Poh YC, Yokohama-Tamaki T, Wang N, Tanaka TS (2010) Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions. PLoS ONE 5(12):e15655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desbaillets I, Ziegler U, Groscurth P, Gassmann M (2000) Embryoid bodies: an in vitro model of mouse embryogenesis. Exp Physiol 85(6):645–651

    Article  CAS  PubMed  Google Scholar 

  • Driscoll TP, Cosgrove BD, Heo SJ, Shurden ZE, Mauck RL (2015) Cytoskeletal to nuclear strain transfer regulates YAP signaling in mesenchymal stem cells. Biophys J 108(12):2783–2793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N (2011) Role of YAP/TAZ in mechanotransduction. Nature 474(7350):179–183

    Article  CAS  PubMed  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  CAS  PubMed  Google Scholar 

  • Evans ND, Minelli C, Gentleman E, LaPointe V, Patankar SN, Kallivretaki M, Chen X, Roberts CJ, Stevens MM (2009) Substrate stiffness affects early differentiation events in embryonic stem cells. Eur Cell Mater 18(1):e13

    Google Scholar 

  • Girgin M, Broguiere N, Mattolini L, Lutolf MA (2023) New approach to generate gastruloids to develop anterior neural tissues. Bio Protoc 13(14):e4722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar N, Hinduja I, Nagvenkar P, Pillai L, Zaveri K, Mukadam L, Telang J, Desai S, Mangoli V, Mangoli R, Padgaonkar S, Kaur G, Puri C, Bhartiya D (2009) Derivation and characterization of two genetically unique human embryonic stem cell lines on in-house-derived human feeders. Stem Cells Dev 18(3):435–445

    Article  CAS  PubMed  Google Scholar 

  • Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373–379

    Article  CAS  PubMed  Google Scholar 

  • Li X, Ma R, Gu Q, Liang L, Wang L, Zhang Y, Wang X, Liu X, Li Z, Fang J, Wu J (2018) A fully defined static suspension culture system for large-scale human embryonic stem cell production. Cell Death Dis 9(9):892

    Article  PubMed  PubMed Central  Google Scholar 

  • Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, Okochi H, Okuda A, Matoba R, Sharov AA, Ko MS (2007) Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 9(6):625–635

    Article  CAS  PubMed  Google Scholar 

  • Niwa H, Burdon T, Chambers I, Smith A (1998) Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Gene Dev 12(13):2048–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SK, Chen AK, Mok Y, Chen X, Lim UM, Chin A, Choo AB, Reuveny S (2009) Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Res 2(3):219–230

    Article  CAS  PubMed  Google Scholar 

  • Pan G, Thomson JA (2007) Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res 17(1):42–49

    Article  CAS  PubMed  Google Scholar 

  • Perestrelo T, Correia M, Ramalho-Santos J, Wirtz D (2018) Metabolic and mechanical cues regulating pluripotent stem cell fate. Trends Cell Biol 28:1014–29

    Article  CAS  PubMed  Google Scholar 

  • Rowland TJ, Miller LM, Blaschke AJ, Doss EL, Bonham AJ, Hikita ST, Johnson LV, Clegg DO (2010) Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin. Stem Cells Dev 19(8):1231–1240

    Article  CAS  PubMed  Google Scholar 

  • Shi G, Jin Y (2010) Role of Oct4 in maintaining and regaining stem cell pluripotency. Stem Cell Res Ther 1:1–9

    Article  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Vallier L, Alexander M, Pedersen RA (2005) Activin/nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci 118(19):4495–4509

    Article  CAS  PubMed  Google Scholar 

  • Van HD, D’Amour KA, German MS, Van Hoof D (2009) Derivation of insulin-producing cells from human embryonic stem cells. Stem Cell Res 3:73–87

    Article  Google Scholar 

  • Virdi JK, Pethe P (2022) Soft substrate maintains stemness and pluripotent stem cell-like phenotype of human embryonic stem cells under defined culture conditions. Cytotechnology 74(4):479–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhang Z, Tao H, Liu J, Hopyan S, Sun Y (2018) Characterizing inner pressure and stiffness of trophoblast and inner cell mass of blastocysts. Biophys J 115(12):2443–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Chong LH, Woon JYX, Chua TX, Cheruba E, Yip AK, Li HY, Chiam KH, Koh CG (2023) Zyxin regulates embryonic stem cell fate by modulating mechanical and biochemical signaling interface. Commun Biol 6(1):62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Fei X, Guo J, Zou G, Pan W, Zhang J, Huang Y, Liu T, Cheng W (2017) Induction of reprogramming of human amniotic epithelial cells into iPS cells by overexpression of Yap, Oct4 and Sox2 through the activation of the Hippo-Yap pathway. Exp Ther Med 14(1):199–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was funded by Department of Biotechnology (DBT), Government of India, New Delhi (BT/PR28474/MED/31/393/2018), and the Human Resource Development Group, Council of Scientific & Industrial Research (CSIR - HRDG), Government of India, New Delhi, awarded J.K.V. Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The study was conceptualised by P.P, while J.K.V. conducted the experimental procedures and prepared the initial draft. Both the authors did the analysis and data interpretation.

Corresponding author

Correspondence to Prasad Pethe.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virdi, J.K., Pethe, P. Human embryonic stem cells maintain their stemness in three-dimensional microenvironment. In Vitro Cell.Dev.Biol.-Animal 60, 215–221 (2024). https://doi.org/10.1007/s11626-024-00868-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-024-00868-5

Navigation