Abstract
Wnt signaling pathways represent an evolutionarily highly conserved, intricate network of molecular interactions that regulates various aspects of cellular behavior, including embryonic development and tissue homeostasis. Wnt signaling pathways share the β-catenin-dependent (canonical) and the multiple β-catenin-independent (non-canonical) pathways. These pathways collectively orchestrate a wide range of cellular processes through distinct mechanisms of action. Both the β-catenin-dependent and β-catenin-independent pathways are closely intertwined with microtubule dynamics, underscoring the complex crosstalk between Wnt signaling and the cellular cytoskeleton. This interplay involves several mechanisms, including how the components of Wnt signaling can influence the stability, organization, and distribution of microtubules. The modulation of microtubule dynamics by Wnt signaling plays a crucial role in coordinating cellular behaviors and responses to external signals. In this comprehensive review, we discussed the current understanding of how Wnt signaling and microtubule dynamics intersect in various aspects of cellular behavior. This study provides insights into our understanding of these crucial cellular processes.
Similar content being viewed by others
Change history
04 March 2024
A Correction to this paper has been published: https://doi.org/10.1007/s11626-024-00887-2
References
Acebron SP, Niehrs C (2016) Β-catenin-independent roles of wnt/lrp6 signaling. Trends Cell Biol 26(12):956–967. https://doi.org/10.1016/j.tcb.2016.07.009
Akhmanova A, Steinmetz MO (2008) Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 9(4):309–322. https://doi.org/10.1038/nrm2369
Albrecht LV, Tejeda-Muñoz N, De Robertis EM (2021) Cell biology of canonical wnt signaling. Annu Rev Cell Dev Biol 37:369–389. https://doi.org/10.1146/annurev-cellbio-120319-023657
Arata M, Usami FM, Fujimori T (2022) Coordination of cilia movements in multi-ciliated cells. J Dev Biol 10:4. https://doi.org/10.3390/jdb10040047
Askham JM, Moncur P, Markham AF, Morrison EE (2000) Regulation and function of the interaction between the apc tumour suppressor protein and eb1. Oncogene 19(15):1950–1958. https://doi.org/10.1038/sj.onc.1203498
Aw WY, Devenport D (2017) Planar cell polarity: global inputs establishing cellular asymmetry. Curr Opin Cell Biol 44:110–116. https://doi.org/10.1016/j.ceb.2016.08.002
Bahmanyar S, Kaplan DD, Deluca JG, Giddings TH Jr, O’Toole ET, Winey M, Salmon ED, Casey PJ, Nelson WJ, Barth AI (2008) Beta-catenin is a nek2 substrate involved in centrosome separation. Genes Dev 22(1):91–105. https://doi.org/10.1101/gad.1596308
Balmer S, Dussert A, Collu GM, Benitez E, Iomini C, Mlodzik M (2015) Components of intraflagellar transport complex a function independently of the cilium to regulate canonical wnt signaling in drosophila. Dev Cell 34(6):705–718. https://doi.org/10.1016/j.devcel.2015.07.016
Barnat M, Benassy MN, Vincensini L, Soares S, Fassier C, Propst F, Andrieux A, von Boxberg Y, Nothias F (2016) The gsk3-map1b pathway controls neurite branching and microtubule dynamics. Mol Cell Neurosci 72:9–21. https://doi.org/10.1016/j.mcn.2016.01.001
Basheer N, Smolek T, Hassan I, Liu F, Iqbal K, Zilka N, Novak P (2023) Does modulation of tau hyperphosphorylation represent a reasonable therapeutic strategy for Alzheimer’s disease? From preclinical studies to the clinical trials. Mol Psychiatry 28(6):2197–2214. https://doi.org/10.1038/s41380-023-02113-z
Bilic J, Huang YL, Davidson G, Zimmermann T, Cruciat CM, Bienz M, Niehrs C (2007) Wnt induces lrp6 signalosomes and promotes dishevelled-dependent lrp6 phosphorylation. Science 316(5831):1619–1622. https://doi.org/10.1126/science.1137065
Bouquet C, Soares S, von Boxberg Y, Ravaille-Veron M, Propst F, Nothias F (2004) Microtubule-associated protein 1b controls directionality of growth cone migration and axonal branching in regeneration of adult dorsal root ganglia neurons. J Neurosci 24(32):7204–7213. https://doi.org/10.1523/jneurosci.2254-04.2004
Caccamo A, Oddo S, Tran LX, LaFerla FM (2007) Lithium reduces tau phosphorylation but not a beta or working memory deficits in a transgenic model with both plaques and tangles. Am J Pathol 170(5):1669–1675. https://doi.org/10.2353/ajpath.2007.061178
Ciani L, Krylova O, Smalley MJ, Dale TC, Salinas PC (2004) A divergent canonical wnt-signaling pathway regulates microtubule dynamics : dishevelled signals locally to stabilize microtubules. J Cell Biol 164(2):243–253. https://doi.org/10.1083/jcb.200309096
Ciani L, Salinas PC (2007) C-jun n-terminal kinase (jnk) cooperates with gsk3beta to regulate dishevelled-mediated microtubule stability. BMC Cell Biol 8:27. https://doi.org/10.1186/1471-2121-8-27
Cohen P, Frame S (2001) The renaissance of gsk3. Nat Rev Mol Cell Biol 2(10):769–776. https://doi.org/10.1038/35096075
Cong F, Schweizer L, Chamorro M, Varmus H (2003) Requirement for a nuclear function of beta-catenin in wnt signaling. Mol Cell Biol 23(23):8462–8470. https://doi.org/10.1128/mcb.23.23.8462-8470.2003
Del Valle-Pérez B, Arqués O, Vinyoles M, de Herreros AG, Duñach M (2011) Coordinated action of ck1 isoforms in canonical wnt signaling. Mol Cell Biol 31(14):2877–2888. https://doi.org/10.1128/mcb.01466-10
Etienne-Manneville S, Hall A (2003) Cdc42 regulates gsk-3beta and adenomatous polyposis coli to control cell polarity. Nature 421(6924):753–756. https://doi.org/10.1038/nature01423
Ewen-Campen B, Comyn T, Vogt E, Perrimon N (2020) No evidence that wnt ligands are required for planar cell polarity in Drosophila. Cell Rep 32(10):108121. https://doi.org/10.1016/j.celrep.2020.108121
Fodde R, Kuipers J, Rosenberg C, Smits R, Kielman M, Gaspar C, van Es JH, Breukel C, Wiegant J, Giles RH et al (2001) Mutations in the apc tumour suppressor gene cause chromosomal instability. Nat Cell Biol 3(4):433–438. https://doi.org/10.1038/35070129
Fumoto K, Hoogenraad CC, Kikuchi A (2006) Gsk-3beta-regulated interaction of bicd with dynein is involved in microtubule anchorage at centrosome. EMBO J 25(24):5670–5682. https://doi.org/10.1038/sj.emboj.7601459
Fumoto K, Kikuchi K, Gon H, Kikuchi A (2012) Wnt5a signaling controls cytokinesis by correctly positioning ESCRT-III at the midbody. J Cell Sci 125:4822–4832
Gao B, Song H, Bishop K, Elliot G, Garrett L, English MA, Andre P, Robinson J, Sood R, Minami Y et al (2011) Wnt signaling gradients establish planar cell polarity by inducing vangl2 phosphorylation through ror2. Dev Cell 20(2):163–176. https://doi.org/10.1016/j.devcel.2011.01.001
Goold RG, Owen R, Gordon-Weeks PR (1999) Glycogen synthase kinase 3beta phosphorylation of microtubule-associated protein 1b regulates the stability of microtubules in growth cones. J Cell Sci 112(Pt 19):3373–3384. https://doi.org/10.1242/jcs.112.19.3373
Hadjihannas MV, Brückner M, Behrens J (2010) Conductin/axin2 and wnt signalling regulates centrosome cohesion. EMBO Rep 11(4):317–324. https://doi.org/10.1038/embor.2010.23
Hino S, Michiue T, Asashima M, Kikuchi A (2003) Casein kinase i epsilon enhances the binding of dvl-1 to frat-1 and is essential for wnt-3a-induced accumulation of beta-catenin. J Biol Chem 278(16):14066–14073. https://doi.org/10.1074/jbc.M213265200
Hur EM, Saijilafu LBD, Kim SJ, Xu WL, Zhou FQ (2011) Gsk3 controls axon growth via clasp-mediated regulation of growth cone microtubules. Genes Dev 25(18):1968–1981. https://doi.org/10.1101/gad.17015911
Izumi N, Fumoto K, Izumi S, Kikuchi A (2008) Gsk-3beta regulates proper mitotic spindle formation in cooperation with a component of the gamma-tubulin ring complex, gcp5. J Biol Chem 283(19):12981–12991. https://doi.org/10.1074/jbc.M710282200
Jaulin F, Kreitzer G (2010) Kif17 stabilizes microtubules and contributes to epithelial morphogenesis by acting at mt plus ends with eb1 and apc. J Cell Biol 190(3):443–460. https://doi.org/10.1083/jcb.201006044
Jimbo T, Kawasaki Y, Koyama R, Sato R, Takada S, Haraguchi K, Akiyama T (2002) Identification of a link between the tumour suppressor apc and the kinesin superfamily. Nat Cell Biol 4(4):323–327. https://doi.org/10.1038/ncb779
Johnson GVW, Stoothoff WH (2004) Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci 117(24):5721–5729. https://doi.org/10.1242/jcs.01558
Jope RS, Johnson GV (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29(2):95–102. https://doi.org/10.1016/j.tibs.2003.12.004
Kaplan KB, Burds AA, Swedlow JR, Bekir SS, Sorger PK, Näthke IS (2001) A role for the adenomatous polyposis coli protein in chromosome segregation. Nat Cell Biol 3(4):429–432. https://doi.org/10.1038/35070123
Kikuchi A, Yamamoto H (2008) Tumor formation due to abnormalities in the beta-catenin-independent pathway of wnt signaling. Cancer Sci 99(2):202–208. https://doi.org/10.1111/j.1349-7006.2007.00675.x
Kikuchi K, Nakamura A, Arata M, Shi D, Nakagawa M, Tanaka T, Uemura T, Fujimori T, Kikuchi A, Uezu A et al (2018) Map7/7d1 and dvl form a feedback loop that facilitates microtubule remodeling and wnt5a signaling. EMBO reports. 19:7. https://doi.org/10.15252/embr.201745471
Kikuchi K, Niikura Y, Kitagawa K, Kikuchi A (2010) Dishevelled, a wnt signalling component, is involved in mitotic progression in cooperation with plk1. EMBO J 29:3470–3483. https://doi.org/10.1038/emboj.2010.221
Komiya Y, Habas R (2008) Wnt Signal Transduction Pathways. Organogenesis 4(2):68–75. https://doi.org/10.4161/org.4.2.5851
Kumari A, Shriwas O, Sisodiya S, Santra MK, Guchhait SK, Dash R, Panda D (2021) Microtubule-targeting agents impair kinesin-2-dependent nuclear transport of β-catenin: evidence of inhibition of wnt/β-catenin signaling as an important antitumor mechanism of microtubule-targeting agents. FASEB J 35(4):e21539. https://doi.org/10.1096/fj.202002594R
Lechtreck KF (2015) Ift-cargo interactions and protein transport in cilia. Trends Biochem Sci 40(12):765–778. https://doi.org/10.1016/j.tibs.2015.09.003
Lee KH, Johmura Y, Yu LR, Park JE, Gao Y, Bang JK, Zhou M, Veenstra TD, Yeon Kim B, Lee KS (2012) Identification of a novel wnt5a-ck1ɛ-dvl2-plk1-mediated primary cilia disassembly pathway. EMBO J 31(14):3104–3117. https://doi.org/10.1038/emboj.2012.144
Li L, Yuan H, Weaver CD, Mao J, Farr GH 3rd, Sussman DJ, Jonkers J, Kimelman D, Wu D (1999) Axin and frat1 interact with dvl and gsk, bridging dvl to gsk in wnt-mediated regulation of lef-1. EMBO J 18(15):4233–4240. https://doi.org/10.1093/emboj/18.15.4233
Linh TV, Marek M (2023) Wg/wnt-signaling induced nuclear translocation of β-catenin is attenuated by a β-catenin peptide through its interaction with ift-a in development and cancer cells. bioRxiv 2006(2014):544986. https://doi.org/10.1101/2023.06.14.544986
Lucas FR, Goold RG, Gordon-Weeks PR, Salinas PC (1998) Inhibition of gsk-3beta leading to the loss of phosphorylated map-1b is an early event in axonal remodelling induced by wnt-7a or lithium. J Cell Sci 111(Pt 10):1351–1361. https://doi.org/10.1242/jcs.111.10.1351
Ma W, Chen M, Kang H, Steinhart Z, Angers S, He X, Kirschner MW (2020) Single-molecule dynamics of dishevelled at the plasma membrane and wnt pathway activation. Proc Natl Acad Sci USA 117(28):16690–16701. https://doi.org/10.1073/pnas.1910547117
Matis M, Russler-Germain DA, Hu Q, Tomlin CJ, Axelrod JD (2014) Microtubules provide directional information for core pcp function. Elife 3:e02893. https://doi.org/10.7554/eLife.02893
Matsumoto S, Fumoto K, Okamoto T, Kaibuchi K, Kikuchi A (2010) Binding of apc and dishevelled mediates wnt5a-regulated focal adhesion dynamics in migrating cells. EMBO J 29(7):1192–1204. https://doi.org/10.1038/emboj.2010.26
Mbom BC, Siemers KA, Ostrowski MA, Nelson WJ, Barth AI (2014) Nek2 phosphorylates and stabilizes β-catenin at mitotic centrosomes downstream of plk1. Mol Biol Cell 25(7):977–991. https://doi.org/10.1091/mbc.E13-06-0349
Mimori-Kiyosue Y, Shiina N, Tsukita S (2000a) Adenomatous polyposis coli (apc) protein moves along microtubules and concentrates at their growing ends in epithelial cells. J Cell Biol 148(3):505–518. https://doi.org/10.1083/jcb.148.3.505
Mimori-Kiyosue Y, Shiina N, Tsukita S (2000b) The dynamic behavior of the apc-binding protein eb1 on the distal ends of microtubules. Curr Biol 10(14):865–868. https://doi.org/10.1016/s0960-9822(00)00600-x
Moss DK, Bellett G, Carter JM, Liovic M, Keynton J, Prescott AR, Lane EB, Mogensen MM (2007) Ninein is released from the centrosome and moves bi-directionally along microtubules. J Cell Sci 120(Pt 17):3064–3074. https://doi.org/10.1242/jcs.010322
Nakayama S, Yano T, Namba T, Konishi S, Takagishi M, Herawati E, Nishida T, Imoto Y, Ishihara S, Takahashi M et al (2021) Planar cell polarity induces local microtubule bundling for coordinated ciliary beating. J Cell Biol. 220:7. https://doi.org/10.1083/jcb.202010034
Namba T, Ishihara S (2020) Cytoskeleton polarity is essential in determining orientational order in basal bodies of multi-ciliated cells. PLoS Comput Biol 16(2):e1007649. https://doi.org/10.1371/journal.pcbi.1007649
Näthke IS, Adams CL, Polakis P, Sellin JH, Nelson WJ (1996) The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J Cell Biol 134(1):165–179. https://doi.org/10.1083/jcb.134.1.165
Noble W, Planel E, Zehr C, Olm V, Meyerson J, Suleman F, Gaynor K, Wang L, LaFrancois J, Feinstein B et al (2005) Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci USA 102(19):6990–6995. https://doi.org/10.1073/pnas.0500466102
Nusse R (2005) Wnt signaling in disease and in development. Cell Res 15(1):28–32. https://doi.org/10.1038/sj.cr.7290260
Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC (2000) An ldl-receptor-related protein mediates wnt signalling in mice. Nature 407(6803):535–538. https://doi.org/10.1038/35035124
Ruan K, Ye F, Li C, Liou YC, Lin SC, Lin SY (2012) Plk1 interacts and phosphorylates axin that is essential for proper centrosome formation. PLoS ONE 7(11):e49184. https://doi.org/10.1371/journal.pone.0049184
Salinas PC (2007) Modulation of the microtubule cytoskeleton: a role for a divergent canonical wnt pathway. Trends Cell Biol 17(7):333–342. https://doi.org/10.1016/j.tcb.2007.07.003
Schubert A, Voloshanenko O, Ragaller F, Gmach P, Kranz D, Scheeder C, Miersch T, Schulz M, Trümper L, Binder C et al (2022) Superresolution microscopy localizes endogenous dvl2 to wnt signaling-responsive biomolecular condensates. Proc Natl Acad Sci USA 119(30):e2122476119. https://doi.org/10.1073/pnas.2122476119
Shi D, Usami F, Komatsu K, Oka S, Abe T, Uemura T, Fujimori T (2016) Dynamics of planar cell polarity protein vangl2 in the mouse oviduct epithelium. Mech Dev 141:78–89. https://doi.org/10.1016/j.mod.2016.05.002
Shimada Y, Yonemura S, Ohkura H, Strutt D, Uemura T (2006) Polarized transport of frizzled along the planar microtubule arrays in drosophila wing epithelium. Dev Cell 10(2):209–222. https://doi.org/10.1016/j.devcel.2005.11.016
Shnitsar I, Bashkurov M, Masson GR, Ogunjimi AA, Mosessian S, Cabeza EA, Hirsch CL, Trcka D, Gish G, Jiao J et al (2015) Pten regulates cilia through dishevelled. Nat Commun 6:8388. https://doi.org/10.1038/ncomms9388
Smalley MJ, Sara E, Paterson H, Naylor S, Cook D, Jayatilake H, Fryer LG, Hutchinson L, Fry MJ, Dale TC (1999) Interaction of axin and dvl-2 proteins regulates dvl-2-stimulated tcf-dependent transcription. EMBO J 18(10):2823–2835. https://doi.org/10.1093/emboj/18.10.2823
Takagishi M, Esaki N, Takahashi K, Takahashi M (2020) Cytoplasmic dynein functions in planar polarization of basal bodies within ciliated cells. iScience 23(6):101213. https://doi.org/10.1016/j.isci.2020.101213
Takagishi M, Sawada M, Ohata S, Asai N, Enomoto A, Takahashi K, Weng L, Ushida K, Ara H, Matsui S et al (2017) Daple coordinates planar polarized microtubule dynamics in ependymal cells and contributes to hydrocephalus. Cell Rep 20(4):960–972. https://doi.org/10.1016/j.celrep.2017.06.089
Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, Hess F, Saint-Jeannet JP, He X (2000) Ldl-receptor-related proteins in wnt signal transduction. Nature 407(6803):530–535. https://doi.org/10.1038/35035117
Tauriello DV, Jordens I, Kirchner K, Slootstra JW, Kruitwagen T, Bouwman BA, Noutsou M, Rüdiger SG, Schwamborn K, Schambony A et al (2012) Wnt/β-catenin signaling requires interaction of the dishevelled dep domain and c terminus with a discontinuous motif in frizzled. Proc Natl Acad Sci USA 109(14):E812-820. https://doi.org/10.1073/pnas.1114802109
Tolwinski NS, Wieschaus E (2004) A nuclear function for armadillo/beta-catenin. PLoS Biol 2(4):E95. https://doi.org/10.1371/journal.pbio.0020095
Usami FM, Arata M, Shi D, Oka S, Higuchi Y, Tissir F, Takeichi M, Fujimori T (2021) Intercellular and intracellular cilia orientation is coordinated by celsr1 and camsap3 in oviduct multi-ciliated cells. J Cell Sci. 134:4. https://doi.org/10.1242/jcs.257006
Vladar EK, Bayly RD, Sangoram AM, Scott MP, Axelrod JD (2012) Microtubules enable the planar cell polarity of airway cilia. Curr Biol 22(23):2203–2212. https://doi.org/10.1016/j.cub.2012.09.046
Vuong LT, Iomini C, Balmer S, Esposito D, Aaronson SA, Mlodzik M (2018) Kinesin-2 and ift-a act as a complex promoting nuclear localization of β-catenin during wnt signalling. Nat Commun 9(1):5304. https://doi.org/10.1038/s41467-018-07605-z
Vuong LT, Mukhopadhyay B, Choi KW (2014) Kinesin-ii recruits armadillo and dishevelled for wingless signaling in Drosophila. Development 141(16):3222–3232. https://doi.org/10.1242/dev.106229
Wehrli M, Dougan ST, Caldwell K, O’Keefe L, Schwartz S, Vaizel-Ohayon D, Schejter E, Tomlinson A, DiNardo S (2000) Arrow encodes an ldl-receptor-related protein essential for wingless signalling. Nature 407(6803):527–530. https://doi.org/10.1038/35035110
Wittmann T, Waterman-Storer CM (2005) Spatial regulation of clasp affinity for microtubules by rac1 and gsk3beta in migrating epithelial cells. J Cell Biol 169(6):929–939. https://doi.org/10.1083/jcb.200412114
Wodarz A, Nusse R (1998) Mechanisms of wnt signaling in development. Annu Rev Cell Dev Biol 14:59–88. https://doi.org/10.1146/annurev.cellbio.14.1.59
Wu J, Roman AC, Carvajal-Gonzalez JM, Mlodzik M (2013) Wg and wnt4 provide long-range directional input to planar cell polarity orientation in drosophila. Nat Cell Biol 15(9):1045–1055. https://doi.org/10.1038/ncb2806
Yang K, Tylkowski MA, Hüber D, Contreras CT, Hoyer-Fender S (2018) Odf2 maintains centrosome cohesion by restricting β-catenin accumulation. J Cell Sci. 131:20. https://doi.org/10.1242/jcs.220954
Yang Y, Liu M, Li D, Ran J, Gao J, Suo S, Sun SC, Zhou J (2014) Cyld regulates spindle orientation by stabilizing astral microtubules and promoting dishevelled-numa-dynein/dynactin complex formation. Proc Natl Acad Sci USA 111(6):2158–2163. https://doi.org/10.1073/pnas.1319341111
Yu JJS, Maugarny-Calès A, Pelletier S, Alexandre C, Bellaiche Y, Vincent JP, McGough IJ (2020) Frizzled-dependent planar cell polarity without secreted wnt ligands. Dev Cell 54(5):583-592.e585. https://doi.org/10.1016/j.devcel.2020.08.004
Zaal KJ, Reid E, Mousavi K, Zhang T, Mehta A, Bugnard E, Sartorelli V, Ralston E (2011) Who needs microtubules? Myogenic reorganization of mtoc, golgi complex and er exit sites persists despite lack of normal microtubule tracks. PLoS ONE 6(12):e29057. https://doi.org/10.1371/journal.pone.0029057
Zumbrunn J, Kinoshita K, Hyman AA, Näthke IS (2001) Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by gsk3 beta phosphorylation. Curr Biol 11(1):44–49. https://doi.org/10.1016/s0960-9822(01)00002-1
Funding
This work was supported by JSPS KAKENHI Grant Numbers 22700881, 24700980, 15K07054, 19K06664, 22K06226, JP16H06280, and JP22H04926, grants from the Novartis Foundation for the Promotion of Science, the Nakatomi Foundation, the Japan Spina Bifida & Hydrocephalus Research Foundation, the Takeda Science Foundation, Astellas Foundation for Research on Metabolic Disorders, the Mochida Memorial Foundation, and the Uehara Memorial Foundation and the program of the Joint Usage/Research Centre for Developmental Medicine, Institute of Molecular Embryology and Genetics, Kumamoto University (to K.K.), JSPS KAKENHI Grant Numbers 22K15130 and the Takeda Science Foundation (to M.A.).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
The original online version of this article was revised: Due to an error during production, the title of this article was incorrect in the article as originally published and has been corrected.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kikuchi, K., Arata, M. The interplay between Wnt signaling pathways and microtubule dynamics. In Vitro Cell.Dev.Biol.-Animal 60, 502–512 (2024). https://doi.org/10.1007/s11626-024-00860-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11626-024-00860-z