Skip to main content
Log in

The molecular mechanisms underlying the regeneration process in the earthworm, Perionyx excavatus exhibit indications of apoptosis-induced compensatory proliferation (AICP)

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Regeneration is a multifaceted biological phenomenon that necessitates the intricate orchestration of apoptosis, stem cells, and immune responses, culminating in the regulation of apoptosis-induced compensatory proliferation (AICP). The AICP context of research is observed in many animal models like in Hydra, Xenopus, newt, Drosophila, and mouse but so far not reported in earthworm. The earthworm Perionyx excavatus is used in the present study to understand the relationship between AICP-related protein expression and regeneration success in different conditions (normal regeneration and abnormal multiple bud formation). Initially, the worms are amputated into five equal portions and it is revealed that regeneration in P. excavatus is clitellum independent and it gives more preference for anterior regeneration (regrowth of head portion) than for posterior regeneration (regrowth of tail portion). The posterior segments of the worm possess enormous regeneration ability but this is lacking in anterior segments. Alkaline phosphate, a stem cell marker, shows strong signals throughout all the posterior segments but it decreases in the initial 1st to 15th anterior segments which lack the regeneration ability. While regenerating normally, it was suggested that the worm follow AICP principles. This is because there was increased expression of apoptosis signals throughout the regeneration process along with constant expression of stem cell proliferation response together with cellular proliferation. In amputated posterior segments maintained in vitro, the apoptosis signals were extensively detected on the 1st day. However, on the 4th and 6th days, caspase-3 and H2AX expression are significantly suppressed, which may eventually alter the Wnt3a and histone H3 patterns that impair the AICP and result in multiple bud formation. Our results suggest that AICP-related protein expression pattern is crucial for initiating proper regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Bergmann A, Steller H (2010) Apoptosis, stem cells, and tissue regeneration. Sci Signal 3:re8–re8

    Article  PubMed  PubMed Central  Google Scholar 

  • Bodó K, Kellermayer Z, László Z et al (2021) Injury-induced innate immune response during segment regeneration of the earthworm. Eisenia Andrei Int J Mol Sci 22:2363

    Article  PubMed  Google Scholar 

  • Brunner D, Frank J, Appl H et al (2010) The serum-free media interactive online database. ALTEX-Altern Anim Exp 27:53–62

    Google Scholar 

  • Cebrià F, Adell T, Saló E (2018) Rebuilding a planarian: from early signaling to final shape. Int J Dev Biol 62:537–550

    Article  PubMed  Google Scholar 

  • Chacón-Martínez CA, Koester J, Wickström SA (2018) Signaling in the stem cell niche: regulating cell fate, function and plasticity. Development 145:dev165399

    Article  PubMed  Google Scholar 

  • Chellathurai Vasantha N, Rajagopalan K, Selvan Christyraj JD et al (2019) Heat-inactivated coelomic fluid of the earthworm Perionyx excavatus is a possible alternative source for fetal bovine serum in animal cell culture. Biotechnol Prog 35:e2817

    Article  PubMed  Google Scholar 

  • Chera S, Ghila L, Dobretz K et al (2009) Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration. Dev Cell 17:279–289

    Article  CAS  PubMed  Google Scholar 

  • Chera S, Ghila L, Wenger Y, Galliot B (2011) Injury-induced activation of the MAPK/CREB pathway triggers apoptosis-induced compensatory proliferation in hydra head regeneration. Dev Growth Differ 53:186–201. https://doi.org/10.1111/j.1440-169X.2011.01250.x

    Article  CAS  PubMed  Google Scholar 

  • Cho S-J, Koh KS, Lee E, Park SC (2009) Differential expression of three labial genes during earthworm head regeneration. Biosci Biotechnol Biochem 73:2609–2614

    Article  CAS  PubMed  Google Scholar 

  • Choi K-W, Hsu Y-C (2007) To cease or to proliferate: new insights into TCTP function from a Drosophila study. Cell Adh Migr 1:129–130

    Article  PubMed  PubMed Central  Google Scholar 

  • Diwanji N, Bergmann A (2017) The beneficial role of extracellular reactive oxygen species in apoptosis-induced compensatory proliferation. Fly 11:46–52

    Article  PubMed  Google Scholar 

  • Dotto GP (2009) Crosstalk of Notch with p53 and p63 in cancer growth control. Nat Rev Cancer 9:587–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmaci I, Altinoz MA, Sari R, Bolukbasi FH (2018) Phosphorylated histone H3 (PHH3) as a novel cell proliferation marker and prognosticator for meningeal tumors: a short review. Appl Immunohistochem Mol Morphol 26:627–631

    Article  CAS  PubMed  Google Scholar 

  • Elston R, Inman GJ (2012) Crosstalk between p53 and TGF-β Signalling. J Signal Transduct 2012:

  • Fan Y, Bergmann A (2008) Apoptosis-induced compensatory proliferation. The cell is dead. Long live the cell! Trends Cell Biol 18:467–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fogarty CE, Bergmann A (2017) Killers creating new life: caspases drive apoptosis-induced proliferation in tissue repair and disease. Cell Death Differ 24:1390–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furth N, Aylon Y, Oren M (2018) p53 shades of Hippo. Cell Death Differ 25:81–92

    Article  CAS  PubMed  Google Scholar 

  • Gajalakshmi S, Ramasamy EV, Abbasi SA (2001) Potential of two epigeic and two anecic earthworm species in vermicomposting of water hyacinth. Bioresour Technol 76:177–181

    Article  CAS  PubMed  Google Scholar 

  • Gopi Daisy N, Subramanian ER, Selvan Christyraj JD et al (2016) Studies on regeneration of central nervous system and social ability of the earthworm Eudrilus eugeniae. Invertebr Neurosci 16:1–13

    Article  Google Scholar 

  • Goyal H, Chachoua I, Pecquet C et al (2020) A p53-JAK-STAT connection involved in myeloproliferative neoplasm pathogenesis and progression to secondary acute myeloid leukemia. Blood Rev 42:100712

    Article  CAS  PubMed  Google Scholar 

  • Gu X, Yao L, Ma G et al (2014) TCTP promotes glioma cell proliferation in vitro and in vivo via enhanced β-catenin/TCF-4 transcription. Neuro Oncol 16:217–227

    Article  CAS  PubMed  Google Scholar 

  • Gupta S (2016) Animal models: Unlock your inner salamander. Nature 540:S58–S59

    Article  CAS  PubMed  Google Scholar 

  • Habberstad AH, Gulati S, Torp SH (2011) Evaluation of the proliferation markers Ki-67/MIB-1, mitosin, survivin, pHH3, and DNA topoisomerase IIα in human anaplastic astrocytomas-an immunohistochemical study. Diagn Pathol 6:1–8

    Article  Google Scholar 

  • Ho L, Alman B (2010) Protecting the hedgerow: p53 and hedgehog pathway interactions. Cell Cycle 9:506–511

    Article  CAS  PubMed  Google Scholar 

  • Iismaa SE, Kaidonis X, Nicks AM et al (2018) Comparative regenerative mechanisms across different mammalian tissues. NPJ Regen Med 3:1–20

    Article  Google Scholar 

  • Johnson Retnaraj Samuel SC, Elaiya Raja S, Beryl Vedha Y et al (2012) Autofluorescence in BrdU-positive cells and augmentation of regeneration kinetics by riboflavin. Stem Cells Dev 21:2071–2083

    Article  CAS  PubMed  Google Scholar 

  • Koide Y, Kiyota T, Tonganunt M et al (2009) Embryonic lethality of fortilin-null mutant mice by BMP-pathway overactivation. Biochimica et Biophysica Acta (BBA) - Gen Subj 1790:326–338

    Article  CAS  Google Scholar 

  • Kwon D, Kim J-S, Cha B-H et al (2016) The effect of fetal bovine serum (FBS) on efficacy of cellular reprogramming for induced pluripotent stem cell (iPSC) generation. Cell Transplant 25:1025–1042

    Article  PubMed  Google Scholar 

  • Ladstein RG, Bachmann IM, Straume O, Akslen LA (2010) Ki-67 expression is superior to mitotic count and novel proliferation markers PHH3, MCM4 and mitosin as a prognostic factor in thick cutaneous melanoma. BMC Cancer 10:1–15

    Article  Google Scholar 

  • Lee K-H, Li M, Michalowski AM et al (2010) A genomewide study identifies the Wnt signaling pathway as a major target of p53 in murine embryonic stem cells. Proc Natl Acad Sci 107:69–74

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Chan AKN, Chang W-H et al (2022) 3-Ketodihydrosphingosine reductase maintains ER homeostasis and unfolded protein response in leukemia. Leukemia 36:100–110

    Article  CAS  PubMed  Google Scholar 

  • Mishra DK, Srivastava P, Sharma A et al (2018) Translationally controlled tumor protein (TCTP) is required for TGF-β1 induced epithelial to mesenchymal transition and influences cytoskeletal reorganization. Biochim Biophys Acta (BBA)-Mol Cell Res 1865:67–75

    Article  CAS  Google Scholar 

  • Mollereau B, Perez-Garijo A, Bergmann A et al (2013) Compensatory proliferation and apoptosis-induced proliferation: a need for clarification. Cell Death Differ 20:181

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Balakrishnan S, Arumugaperumal A et al (2021) The transcriptome of anterior regeneration in earthworm Eudrilus eugeniae. Mol Biol Rep 48:259–283

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan K, Christyraj JDS, Chelladurai KS et al (2022) Comparative analysis of the survival and regeneration potential of juvenile and matured earthworm, Eudrilus eugeniae, upon in vivo and in vitro maintenance. Vitr Cell Dev Biol 58:587–598

    Article  Google Scholar 

  • Rodriguez-Enfedaque A, Bouleau S, Laurent M et al (2009) FGF1 nuclear translocation is required for both its neurotrophic activity and its p53-dependent apoptosis protection. Biochim Biophys Acta (BBA)-Mol Cell Res 1793:1719–1727

    Article  CAS  Google Scholar 

  • Selvan Christyraj JD, Azhagesan A, Ganesan M et al (2020) Understanding the role of the clitellum in the regeneration events of the earthworm Eudrilus eugeniae. Cells Tissues Organs 208:134–141

    Article  Google Scholar 

  • Subbiahanadar Chelladurai K, Selvan Christyraj JD, Azhagesan A et al (2020) Exploring the effect of UV-C radiation on earthworm and understanding its genomic integrity in the context of H2AX expression. Sci Rep 10:21005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villani V, Mahadevan KK, Ligorio M et al (2016) Phosphorylated histone H3 (PHH3) is a superior proliferation marker for prognosis of pancreatic neuroendocrine tumors. Ann Surg Oncol 23:609–617

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogg MC, Galliot B, Tsiairis CD (2019) Model systems for regeneration: Hydra. Development 146:dev177212

    Article  CAS  PubMed  Google Scholar 

  • Voorneveld PW, Kodach LL, Jacobs RJ et al (2015) The BMP pathway either enhances or inhibits the Wnt pathway depending on the SMAD4 and p53 status in CRC. Br J Cancer 112:122–130

    Article  CAS  PubMed  Google Scholar 

  • Wagers AJ (2012) The stem cell niche in regenerative medicine. Cell Stem Cell 10:362–369

    Article  CAS  PubMed  Google Scholar 

  • Waidmann S, Petutschnig E, Rozhon W et al (2022) GSK3-mediated phosphorylation of DEK3 regulates chromatin accessibility and stress tolerance in Arabidopsis. FEBS J 289:473–493

    Article  CAS  PubMed  Google Scholar 

  • Xiao N, Ge F, Edwards CA (2011) The regeneration capacity of an earthworm, Eisenia fetida, in relation to the site of amputation along the body. Acta Ecol Sin 31:197–204

    Article  Google Scholar 

  • Yang L-H, Xu H-T, Han Y et al (2010) Axin downregulates TCF-4 transcription via β-catenin, but not p53, and inhibits the proliferation and invasion of lung cancer cells. Mol Cancer 9:1–14

    Article  CAS  Google Scholar 

  • Yoshida-Noro C, Tochinai S (2010) Stem cell system in asexual and sexual reproduction of Enchytraeus japonensis (Oligochaeta, Annelida). Dev Growth Differ 52:43–55

    Article  CAS  PubMed  Google Scholar 

  • Zhao A, Qin H, Fu X (2016) What determines the regenerative capacity in animals? Bioscience 66:735–746

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the International Research Centre (IRC) of Sathyabama Institute of Science and Technology, located in Chennai, for their invaluable support in facilitating the execution of the research endeavors.

Funding

This work was supported by the DST-SHRI-INDIA (DST/TDT/SHRI-24/2021 (G)).

Author information

Authors and Affiliations

Authors

Contributions

KR was contributing in writing the original draft, conceptualization, data collection, and figures; JDSC was involved in the writing original draft, conceptualization, investigation, supervision, and project administration; JRS was involved in the investigation and project administration; KSC, PD, AR, CV, and NSMC were involved in the data curation and language editing.

Corresponding authors

Correspondence to Jackson Durairaj Selvan Christyraj or Johnson Retnaraj Samuel Selvan Christyraj.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 1642 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajagopalan, K., Christyraj, J.D.S., Chelladurai, K.S. et al. The molecular mechanisms underlying the regeneration process in the earthworm, Perionyx excavatus exhibit indications of apoptosis-induced compensatory proliferation (AICP). In Vitro Cell.Dev.Biol.-Animal 60, 222–235 (2024). https://doi.org/10.1007/s11626-023-00843-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-023-00843-6

Keywords

Navigation