Skip to main content
Log in

Effect and mechanism of hypoxia on differentiation of porcine-induced pluripotent stem cells into vascular endothelial cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Pigs are similar to humans in organ size and physiological function, and are considered as good models for studying cardiovascular diseases. The study of porcine-induced pluripotent stem cells (piPSC) differentiating into vascular endothelial cells (EC) is expected to open up a new way of obtaining high-quality seed cells. Given that the hypoxic environment has an important role in the differentiation process of vascular EC, this work intends to establish a hypoxia-induced differentiation system of piPSC into vascular EC. There is evidence that the hypoxia microenvironment in the initial stage could significantly improve differentiation efficiency. Further study suggests that the hypoxia culture system supports a combined effect of hypoxia inducible factors and their associated regulatory molecules, such as HIF-1α, VEGFA, FGF2, LDH-A, and PDK1, which can efficiently promote the lineage-specific differentiation of piPSC into EC. Most notably, the high level of ETV2 after 4 d of hypoxic treatment indicates that it possibly plays an important role in the promoting process of EC differentiation. The research is expected to help the establishment of new platforms for piPSC directional induction research, so as to obtain adequate seed cells with ideal phenotype and functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

Data availability

The data presented in this study are available upon request from the corresponding authors.

References

  • Batie M, Frost J, Frost M, Wilson JW, Schofield P, Rocha S (2019) Hypoxia induces rapid changes to histone methylation and reprograms chromatin. Science 363:1222–1226

    Article  CAS  PubMed  ADS  Google Scholar 

  • Cameron CM, Harding F, Hu WS, Kaufman DS (2008) Activation of hypoxic response in human embryonic stem cell-derived embryoid bodies. Exp Biol Med (Maywood) 233:1044–1057

    Article  CAS  PubMed  Google Scholar 

  • Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty AA, Laukka T, Myllykoski M, Ringel AE, Booker MA, Tolstorukov MY, Meng YJ, Meier SR, Jennings RB, Creech AL, Herbert ZT, McBrayer SK, Olenchock BA, Jaffe JD, Haigis MC, Beroukhim R, Signoretti S, Koivunen P, Kaelin WG Jr (2019) Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science 363:1217–1222

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Cheng F, Xu L, Dai J, Yi X, He J, Li H (2022) N, O-carboxymethyl chitosan/oxidized cellulose composite sponge containing ?-poly-L-lysine as a potential wound dressing for the prevention and treatment of postoperative adhesion. Int J Biol Macromol 209:2151–2164

    Article  CAS  PubMed  Google Scholar 

  • Chlopicki S (2015) Perspectives in pharmacology of endothelium: From bench to bedside. Pharmacol Rep 67:vi–ix

    Article  PubMed  Google Scholar 

  • Choudhry H, Harris AL (2018) Advances in hypoxia-inducible factor biology. Cell Metab 27:281–298

    Article  CAS  PubMed  Google Scholar 

  • Dobrynin G, McAllister TE, Leszczynska KB, Ramachandran S, Krieg AJ, Kawamura A, Hammond EM (2017) KDM4A regulates HIF-1 levels through H3K9me3. Sci Rep 7:11094

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Gao LR, Pei XT, Ding QA, Chen Y, Zhang NK, Chen HY, Wang ZG, Wang YF, Zhu ZM, Li TC, Liu HL, Tong ZC, Yang Y, Nan X, Guo F, Shen JL, Shen YH, Zhang JJ, Fei YX, Xu HT, Wang LH, Tian HT, Liu DQ, Yang Y (2013) A critical challenge: dosage-related efficacy and acute complication intracoronary injection of autologous bone marrow mesenchymal stem cells in acute myocardial infarction. Int J Cardiol 168:3191–3199

    Article  PubMed  Google Scholar 

  • Gentillon C, Li D, Duan M, Yu WM, Preininger MK, Jha R, Rampoldi A, Saraf A, Gibson GC, Qu CK, Brown LA, Xu C (2019) Targeting HIF-1α in combination with PPARα activation and postnatal factors promotes the metabolic maturation of human induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 132:120–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginsberg M, James D, Ding BS, Nolan D, Geng F, Butler JM, Schachterle W, Pulijaal VR, Mathew S, Chasen ST, Xiang J, Rosenwaks Z, Shido K, Elemento O, Rabbany SY, Rafii S (2012) Efficient direct reprogramming of mature amniotic cells into endothelial cells by ETS factors and TGFβ suppression. Cell 151:559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock RL, Dunne K, Walport LJ, Flashman E, Kawamura A (2015) Epigenetic regulation by histone demethylases in hypoxia. Epigenomics 7:791–811

    Article  CAS  PubMed  Google Scholar 

  • Hancock RL, Masson N, Dunne K, Flashman E, Kawamura A (2017) The activity of JmjC histone lysine demethylase KDM4A is highly sensitive to oxygen concentrations. ACS Chem Biol 12:1011–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang LE, Arany Z, Livingston DM, Bunn HF (1996) Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 271:32253–32259

    Article  CAS  PubMed  Google Scholar 

  • Hustin J, Schaaps JP (1987) Echographic [corrected] and anatomic studies of the maternotrophoblastic border during the first trimester of pregnancy. Am J Obstet Gynecol 157:162–168

    Article  CAS  PubMed  Google Scholar 

  • Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 12:149–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keith B, Simon MC (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129:465–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim TM, Lee RH, Kim MS, Lewis CA, Park C (2023) ETV2/ER71, the key factor leading the paths to vascular regeneration and angiogenic reprogramming. Stem Cell Res Ther 14:2–16

    Article  Google Scholar 

  • Kohler EE, Wary KK, Li F, Chatterjee I, Urao N, Toth PT, Ushio-Fukai M, Rehman J, Park C, Malik AB (2013) Flk1+ and VE-cadherin+ endothelial cells derived from iPSCs recapitulates vascular development during differentiation and display similar angiogenic potential as ESC-derived cells. PLoS ONE 8:e85549

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Lai WK, Kan MY (2015) Homocysteine-induced endothelial dysfunction. Ann Nutr Metab 67:1–12

    Article  CAS  PubMed  ADS  Google Scholar 

  • Lee D, Park C, Lee H, Lugus JJ, Kim SH, Arentson E, Chung YS, Gomez G, Kyba M, Lin S, Janknecht R, Lim DS, Choi K (2008) ER71 acts downstream of BMP, Notch, and Wnt signaling in blood and vessel progenitor specification. Cell Stem Cell 2:497–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Park C, Han JW, Kim JY, Cho K, Kim EJ, Kim S, Lee SJ, Oh SY, Tanaka Y, Park IH, An HJ, Shin CM, Sharma S, Yoon YS (2017) Direct reprogramming of human dermal fibroblasts into endothelial cells using ER71/ETV2. Circ Res 120:848–861

    Article  CAS  PubMed  Google Scholar 

  • Lee SW, Jeong HK, Lee JY, Yang J, Lee EJ, Kim SY, Youn SW, Lee J, Kim WJ, Kim KW, Lim JM, Park JW, Park YB, Kim HS (2012) Hypoxic priming of mESCs accelerates vascular-lineage differentiation through HIF1-mediated inverse regulation of Oct4 and VEGF. EMBO Mol Med 4:924–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YM, Jeong CH, Koo SY, Son MJ, Song HS, Bae SK, Raleigh JA, Chung HY, Yoo MA, Kim KW (2001) Determination of hypoxic region by hypoxia marker in developing mouse embryos in vivo: a possible signal for vessel development. Dev Dyn 220:175–186

    Article  CAS  PubMed  Google Scholar 

  • Li H, Tang R, Dai J, Wang Z, Meng S, Zhang X, Cheng F (2022) Recent progress in flax fiber-based functional composites. Adv Fiber Mater 4:171–184

    Article  CAS  Google Scholar 

  • Li X, Yu Y, Wei R, Li Y, Lv J, Liu Z, Zhang Y (2021) In vitro and in vivo study on angiogenesis of porcine induced pluripotent stem cell-derived endothelial cells. Differentiation 120:10–18

    Article  CAS  PubMed  Google Scholar 

  • Lindgren AG, Veldman MB, Lin S (2015) ETV2 expression increases the efficiency of primitive endothelial cell derivation from human embryonic stem cells. Cell Regen 4:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Llurba Olive E, Xiao E, Natale DR, Fisher SA (2018) Oxygen and lack of oxygen in fetal and placental development, feto-placental coupling, and congenital heart defects. Birth Defects Res 110:1517–1530

    Article  CAS  PubMed  Google Scholar 

  • Martinez CA, Jiramongkol Y, Bal N, Alwis I, Nedoboy PE, Farnham MMJ, White MD, Cistulli PA, Cook KM (2022) Intermittent hypoxia enhances the expression of hypoxia inducible factor HIF1A through histone demethylation. J Biol Chem 298:102536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nabel EG (1991) Biology of the impaired endothelium. Am J Cardiol 68:6c–8c

    Article  CAS  PubMed  Google Scholar 

  • Pabon JE Jr, Findley WE, Gibbons WE (1989) The toxic effect of short exposures to the atmospheric oxygen concentration on early mouse embryonic development. Fertil Steril 51:896–900

    Article  PubMed  Google Scholar 

  • Phuc Van P, Ngoc Bich V, Hoa Trong N, Oanh Thuy H, Mai Thi-Hoang T (2016) Significant improvement of direct reprogramming efficacy of fibroblasts into progenitor endothelial cells by ETV2 and hypoxia. Stem Cell Res Ther 7:2–10

  • Podkalicka P, Stępniewski J, Mucha O, Kachamakova-Trojanowska N, Dulak J, Łoboda A (2020) Hypoxia as a driving force of pluripotent stem cell reprogramming and differentiation to endothelial cells. Biomolecules 10:2–30

  • Prado-Lopez S, Conesa A, Armiñán A, Martínez-Losa M, Escobedo-Lucea C, Gandia C, Tarazona S, Melguizo D, Blesa D, Montaner D, Sanz-González S, Sepúlveda P, Götz S, O’Connor JE, Moreno R, Dopazo J, Burks DJ, Stojkovic M (2010) Hypoxia promotes efficient differentiation of human embryonic stem cells to functional endothelium. Stem Cells 28:407–418

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo SF, van Ramshorst J, Hoogslag GE, Boden H, Velders MA, Cannegieter SC, Roelofs H, Al Younis I, Dibbets-Schneider P, Fibbe WE, Zwaginga JJ, Bax JJ, Schalij MJ, Beeres SL, Atsma DE (2013) Intramyocardial injection of autologous bone marrow-derived ex vivo expanded mesenchymal stem cells in acute myocardial infarction patients is feasible and safe up to 5 years of follow-up. J Cardiovasc Transl Res 6:816–825

    Article  PubMed  PubMed Central  Google Scholar 

  • Serocki M, Bartoszewska S, Janaszak-Jasiecka A, Ochocka RJ, Collawn JF, Bartoszewski R (2018) miRNAs regulate the HIF switch during hypoxia: a novel therapeutic target. Angiogenesis 21:183–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin JM, Kim J, Kim HE, Lee MJ, Lee KI, Yoo EG, Jeon YJ, Kim DW, Chae JI, Chung HM (2011) Enhancement of differentiation efficiency of hESCs into vascular lineage cells in hypoxia via a paracrine mechanism. Stem Cell Res 7:173–185

    Article  PubMed  Google Scholar 

  • Stainier DYR, Weinstein BM, Detrich HW, Zon LI, Fishman MC (1995) CLOCHE, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 121:3141–3150

    Article  CAS  PubMed  Google Scholar 

  • Tsang KM, Hyun JS, Cheng KT, Vargas M, Mehta D, Ushio-Fukai M, Zou L, Pajcini KV, Rehman J, Malik AB (2017) Embryonic stem cell differentiation to functional arterial endothelial cells through sequential activation of ETV2 and NOTCH1 signaling by HIF1α. Stem Cell Reports 9:796–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Lin RZ, Hong X, Ng AH, Lee CN, Neumeyer J, Wang G, Wang X, Ma M, Pu WT, Church GM, Melero-Martin JM (2020) Robust differentiation of human pluripotent stem cells into endothelial cells via temporal modulation of ETV2 with modified mRNA. Sci Adv 6:eaba7606

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Wei R, Lv J, Li X, Li Y, Xu Q, Jin J, Zhang Y, Liu Z (2020) Derivation of endothelial cells from porcine induced pluripotent stem cells by optimized single layer culture system. J Vet Sci 21:e9

    Article  PubMed  Google Scholar 

  • Wu L, Wary KK, Revskoy S, Gao X, Tsang K, Komarova YA, Rehman J, Malik AB (2015) Histone demethylases KDM4A and KDM4C regulate differentiation of embryonic stem cells to endothelial cells. Stem Cell Reports 5:10–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Hirschi KK (2021) Regulation of hemogenic endothelial cell development and function. Annu Rev Physiol 83:17–37

    Article  CAS  PubMed  Google Scholar 

  • Yu B, Wang X, Song Y, Xie G, Jiao S, Shi L, Cao X, Han X, Qu A (2022a) The role of hypoxia-inducible factors in cardiovascular diseases. Pharmacol Ther 238:108186

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Li X, Li Y, Wei R, Li H, Liu Z, Zhang Y (2022b) Derivation and characterization of endothelial cells from porcine induced pluripotent stem cells. Int J Mol Sci 23:2–16

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (22007010), and the Provincial University Collaborative Innovation Achievement Project (LJGXCG2023-057).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology, Y.L. and T.Y.; software, Y.L., D.S., and Z.Y.; validation, Y.L., D.S., and Z.Y.; formal analysis, investigation, resources data and curation, Y.L., D.S., Z.Y., Y.Z., Z.L., and T.Y.; writing–original draft preparation, Y.L., Y.Z., and T.Y.; writing–review and editing, Y.L., D.S., and T.Y.; visualization, D.S. and T.S.; supervision, Z.L.; project administration, Y.Z., Z.L., and T.Y.; funding acquisition, T.Y. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Tingsheng Yan.

Ethics declarations

Ethics approval

All animal experiments were approved by Animal Care and Use Committee of Northeast Agricultural University and Animal Care and Use Committee of Northeast Agricultural University and were performed according to the guidelines for the welfare and use of animals in stem cell research. The study was approved by the Ethics Committee of Northeast Agriculture University (protocol code: NEAUEC20).

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 74 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Song, D., Yu, Z. et al. Effect and mechanism of hypoxia on differentiation of porcine-induced pluripotent stem cells into vascular endothelial cells. In Vitro Cell.Dev.Biol.-Animal 60, 9–22 (2024). https://doi.org/10.1007/s11626-023-00833-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-023-00833-8

Keywords

Navigation