Skip to main content
Log in

Involvement of ZDHHC9 in lung adenocarcinoma: regulation of PD-L1 stability via palmitoylation

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Palmitoylation is a post-translational modification occurring on cysteine residues, which process is catalyzed by a family of zinc finger Asp-His-His-Cys (DHHC) domain-containing (ZDHHC) protein acyltransferases. As a family member, ZDHHC9 plays a crucial role in varied malignancies by regulating protein stability via protein substrate palmitoylation. Based on the bioinformatic analysis of GEO gene microarray GSE75037 (|log2 fold change|> 1, P < 0.05), ZDHHC9 was defined as a significantly upregulated gene in lung adenocarcinoma (LUAD), which was also confirmed in our collected clinical specimens. It is necessary to explore the biological function of ZDHHC9 in LUAD cells. The follow-up functional experiments revealed that ZDHHC9 deficiency inhibited proliferation, migration, and invasion, while stimulated apoptosis in HCC827 cells. Besides, these malignant phenotypes could be accelerated by ZDHHC9 overexpression in A549. Moreover, we revealed that ZDHHC9 knockdown could promote PD-L1 protein degradation by reducing its palmitoylation level. The reduction of PD-L1 protein level could enhance anti-tumor immunity and inhibit the growth of LUAD cells. Therefore, our study uncovers the tumor-promoting role of ZDHHC9 in LUAD via regulating PD-L1 stability through palmitoylation, highlighting ZDHHC9 as a novel therapeutic target for LUAD.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Anderson AM, Ragan MA (2016) Palmitoylation: a protein S-acylation with implications for breast cancer. NPJ Breast Cancer 2:16028

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Ma H, Wang Z, Zhang S, Yang H, Fang Z (2017) EZH2 Palmitoylation mediated by ZDHHC5 in p53-mutant glioma drives malignant development and progression. Cancer Res 77:4998–5010

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Fillmore CM, Hammerman PS, Kim CF, Wong KK (2014) Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer 14:535–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du W et al (2021) KPNB1-mediated nuclear translocation of PD-L1 promotes non-small cell lung cancer cell proliferation via the Gas6/MerTK signaling pathway. Cell Death Differ 28:1284–1300

    Article  CAS  PubMed  Google Scholar 

  • Greaves J, Chamberlain LH (2014) New links between S-acylation and cancer. J Pathol 233:4–6

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Zhi X, Wang X, Meng D (2021) Protein palmitoylation and its pathophysiological relevance. J Cell Physiol 236:3220–3233

    Article  CAS  PubMed  Google Scholar 

  • Ko PJ, Dixon SJ (2018) Protein palmitoylation and cancer. EMBO Rep 19

  • Kong T et al (2020) CD44 promotes PD-L1 expression and its tumor-intrinsic function in breast and lung cancers. Cancer Res 80:444–457

    Article  CAS  PubMed  Google Scholar 

  • Lei Q, Wang D, Sun K, Wang L, Zhang Y (2020) Resistance mechanisms of anti-PD1/PDL1 therapy in solid tumors. Front Cell Dev Biol 8:672

    Article  PubMed  PubMed Central  Google Scholar 

  • Li CW et al (2016) Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun 7:12632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang J et al (2020) Mex3a interacts with LAMA2 to promote lung adenocarcinoma metastasis via PI3K/AKT pathway. Cell Death Dis 11:614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linder ME, Deschenes RJ (2007) Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol 8:74–84

    Article  CAS  PubMed  Google Scholar 

  • Lu F, Shen SH, Wu S, Zheng P, Lin K, Liao J, Jiang X, Zeng G, Wei D (2022) Hypomethylation-induced prognostic marker zinc finger DHHC-type palmitoyltransferase 12 contributes to glioblastoma progression. Ann Transl Med 10:334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansilla F, Birkenkamp-Demtroder K, Kruhøffer M, Sørensen FB, Andersen CL, Laiho P, Aaltonen LA, Verspaget HW, Orntoft TF (2007) Differential expression of DHHC9 in microsatellite stable and instable human colorectal cancer subgroups. Br J Cancer 96:1896–1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng S, Lu C, Zhang W, Shen W, Wei Y, Su D, Zhou F (2016) MMSA-1 expression pattern in multiple myeloma and its clinical significance. Clin Exp Med 16:599–609

    Article  CAS  PubMed  Google Scholar 

  • Mitchell DA, Vasudevan A, Linder ME, Deschenes RJ (2006) Protein palmitoylation by a family of DHHC protein S-acyltransferases. J Lipid Res 47:1118–1127

    Article  CAS  PubMed  Google Scholar 

  • Qu M, Zhou X, Wang X, Li H (2021) Lipid-induced S-palmitoylation as a vital regulator of cell signaling and disease development. Int J Biol Sci 17:4223–4237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salaun C, Greaves J, Chamberlain LH (2010) The intracellular dynamic of protein palmitoylation. J Cell Biol 191:1229–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma C, Wang HX, Li Q, Knoblich K, Reisenbichler ES, Richardson AL, Hemler ME (2017) Protein acyltransferase DHHC3 regulates breast tumor growth, oxidative stress, and senescence. Cancer Res 77:6880–6890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun C, Mezzadra R, Schumacher TN (2018) Regulation and function of the PD-L1 checkpoint. Immunity 48:434–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249

    Article  PubMed  Google Scholar 

  • Tang F, Yang C, Li FP, Yu DH, Pan ZY, Wang ZF, Li ZQ (2022) Palmitoyl transferases act as potential regulators of tumor-infiltrating immune cells and glioma progression. Mol Ther Nucleic Acids 28:716–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang J et al (2021) Cancer cells escape p53’s tumor suppression through ablation of ZDHHC1-mediated p53 palmitoylation. Oncogene 40:5416–5426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Touz MC, Conrad JT, Nash TE (2005) A novel palmitoyl acyl transferase controls surface protein palmitoylation and cytotoxicity in Giardia lamblia. Mol Microbiol 58:999–1011

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Chen JX, Yang XB, Hong XB, Li ZX, Lin L, Chen YS (2020) Analysis of lung adenocarcinoma subtypes based on immune signatures identifies clinical implications for cancer therapy. Mol Ther Oncolytics 17:241–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y et al (2019) Palmitoylation stabilizes PD-L1 to promote breast tumor growth. Cell Res 29:83–86

    Article  PubMed  Google Scholar 

  • Yao H et al (2019) Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat Biomed Eng 3:306–317

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Zhou Y, Hua Q (2021) circRNA hsa_circ_0018414 inhibits the progression of LUAD by sponging miR-6807-3p and upregulating DKK1. Mol Ther Nucleic Acids 23:783–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young E, Zheng ZY, Wilkins AD, Jeong HT, Li M, Lichtarge O, Chang EC (2014) Regulation of Ras localization and cell transformation by evolutionarily conserved palmitoyltransferases. Mol Cell Biol 34:374–385

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan M et al (2020) ZDHHC12-mediated claudin-3 S-palmitoylation determines ovarian cancer progression. Acta Pharm Sin B 10:1426–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Jiang Q, Ge X, Shi Y, Ye T, Mi Y, Xie T, Li Q, Ye Q (2021a) RHOV promotes lung adenocarcinoma cell growth and metastasis through JNK/c-Jun pathway. Int J Biol Sci 17:2622–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Li F, Fu K, Liu X, Lien IC, Li H (2021b) Potential role of S-palmitoylation in cancer stem cells of lung adenocarcinoma. Front Cell Dev Biol 9:734897

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Zhang S, Liu D, Wang Q, Yang N, Zheng Z, Wu Q, Zhou Y (2021) A novel gene prognostic signature based on differential DNA methylation in breast cancer. Front Genet 12:742578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu P, Kang G, Jiao Y, Gui C, Fan H, Li X, Jia Y, Zhang L, Ma X (2022) The α5-nAChR/PD-L1 axis facilitates lung adenocarcinoma cell migration and invasion. Hum Cell 35:1207–1218

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da Jiang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

11626_2023_755_MOESM1_ESM.docx

Supplementary file1 Figure S1. Efficiency detection of ZDHHC9 overexpressing or silencing. The expression of ZDHHC9 in A549 cells (A) and HCC827 cells (B) was detected by real-time PCR. (C) The protein levels of ZDHHC9 were tested by western blot. Data were assayed in triplicate and analyzed by one-way ANOVA followed by Tukey’s multiple comparison tests. ***P < 0.001. (DOCX 226 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Jiang, D., Liu, F. et al. Involvement of ZDHHC9 in lung adenocarcinoma: regulation of PD-L1 stability via palmitoylation. In Vitro Cell.Dev.Biol.-Animal 59, 193–203 (2023). https://doi.org/10.1007/s11626-023-00755-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-023-00755-5

Keywords

Navigation