Skip to main content
Log in

14-3-3β is essential for milk composition stimulated by Leu/IGF-1 via IGF1R signaling pathway in BMECs

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The cell proliferation of bovine mammary epithelial cells (BMECs) and consequent milk synthesis are regulated by multiple factors. The purpose of this study was to examine the effect of 14-3-3β on cellular proliferation and milk fat/β-casein synthesis in BMECs and reveal its underlying mechanisms. In this study, we employed gene function analysis to explore the regulatory effect and molecular mechanisms of 14-3-3β on milk synthesis and proliferation in BMECs. We found that leucine and IGF-1 enhance cell proliferation and milk synthesis in a 14-3-3β-dependent manner and only exhibiting such effect in the presence of 14-3-3β. We further determined that 14-3-3β interacts with the IGF1R self-phosphorylation site and it additionally mediated leucine and IGF-1 to stimulate the synthesis of milk through the IGF1R-AKT-mTORC1 signaling pathway. In summary, our data indicated that 14-3-3β mediates the expression of milk fat and protein stimulated by leucine and IGF-1, leading to lactogenesis through IGF1R signaling pathway in BMECs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Fig. 3
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  • Akers RM, McFadden TB, Purup S, Vestergaard M, Sejrsen K, Capuco AV (2000) Local IGF-I axis in peripubertal ruminant mammary development. J Mammary Gland Biol Neoplasia 5:43–51

    Article  CAS  PubMed  Google Scholar 

  • Church DD, Schwarz NA, Spillane MB, McKinley-Barnard SK, Andre TL, Ramirez AJ, Willoughby DS (2016) l-Leucine increases skeletal muscle IGF-1 but does not differentially increase Akt/mTORC1 signaling and serum IGF-1 compared to ursolic acid in response to resistance exercise in resistance-trained men. J Am Coll Nutr 35:627–638

    Article  CAS  PubMed  Google Scholar 

  • Collins BC, Gillet LC, Rosenberger G, Röst HL, Vichalkovski A, Gstaiger M, Aebersold R (2013) Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system. Nat Methods 10:1246–1253

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Zhou Z, Saremi B, Helmbrecht A, Wang Z, Loor JJ (2018) Varying the ratio of Lys:Met while maintaining the ratios of Thr:Phe, Lys:Thr, Lys:His, and Lys:Val alters mammary cellular metabolites, mammalian target of rapamycin signaling, and gene transcription. J Dairy Sci 101:1708–1718

    Article  CAS  PubMed  Google Scholar 

  • Dougherty MK, Morrison DK (2004) Unlocking the code of 14-3-3. J Cell Sci 117:1875–1884

    Article  CAS  PubMed  Google Scholar 

  • Eid R, Zhou DR, Arab N, Boucher E, Young PG, Mandato CA, Greenwood MT (2017) Heterologous expression of anti-apoptotic human 14-3-3β/α enhances iron-mediated programmed cell death in yeast. PLoS One 12(8):e0184151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Favelyukis S, Till JH, Hubbard SR, Miller WT (2001) Structure and autoregulation of the insulin-like growth factor 1 receptor kinase. Nat Struct Biol 8:1058–1063

    Article  CAS  PubMed  Google Scholar 

  • Flint DJ, Tonner E, Allan GJ (2000) Insulin-like growth factor binding proteins: IGF-dependent and -independent effects in the mammary gland. J Mammary Gland Biol Neoplasia 5:65–73

    Article  CAS  PubMed  Google Scholar 

  • Furlanetto RW, Dey BR, Lopaczynski W, Nissley SP (1997) 14-3-3 proteins interact with the insulin-like growth factor receptor but not the insulin receptor. Biochem J 327:765–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37:1974–1984

    Article  CAS  PubMed  Google Scholar 

  • Gong F, Wang G, Ye J, Li T, Bai H, Wang W (2013) 14-3-3β regulates the proliferation of glioma cells through the GSK3β/β-catenin signaling pathway. Oncol Rep 30(6):2976–2982

    Article  CAS  PubMed  Google Scholar 

  • González A, Hall MN (2017) Nutrient sensing and TOR signaling in yeast and mammals. EMBO J 36:397–408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo L, Liang Z, Zheng C, Liu B, Yin Q, Cao Y, Yao J (2018) Leucine affects α-amylase synthesis through PI3K/Akt-mTOR Signaling pathways in pancreatic acinar cells of dairy calves. J Agric Food Chem 66:5149–5156

    Article  CAS  PubMed  Google Scholar 

  • Hearris MA, Hammond KM, Fell JM, Morton JP (2018) Regulation of muscle glycogen metabolism during exercise: implications for endurance performance and training adaptations. Nutrients 10(3):298

    Article  PubMed Central  CAS  Google Scholar 

  • Hwang Y, An HT, Kang M, Ko J (2018) Roles of 14-3-3β and γ in regulation of the glucocorticoid receptor transcriptional activation and hepatic gluconeogenesis. Biochem Biophys Res Commun 501:800–806

    Article  CAS  PubMed  Google Scholar 

  • Khudhair N, Luo C, Khalid A, Zhang L, Zhang S, Ao J, Li Q, Gao X (2015) 14-3-3γ affects mTOR pathway and regulates lactogenesis in dairy cow mammary epithelial cells. Vitro Cell Dev Biol Anim 51(7):697–704

    Article  CAS  Google Scholar 

  • Kosaki A, Yamada K, Suga J, Otaka A, Kuzuya H (1998) 14-3-3beta protein associates with insulin receptor substrate 1 and decreases insulin-stimulated phosphatidylinositol 3’-kinase activity in 3T3L1 adipocytes. J Biol Chem 273:940–944

    Article  CAS  PubMed  Google Scholar 

  • Li N, Zhao F, Wei C, Liang M, Zhang N, Wang C, Li QZ, Gao XJ (2014) Function of SREBP1 in the milk fat synthesis of dairy cow mammary epithelial cells. Int J Mol Sci 15:16998–17013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Yu M, Zhou C, Qi H, Wen X, Hou X, Li M, Gao X (2018) FABP5 is a critical regulator of methionine- and estrogen-induced SREBP-1c gene expression in bovine mammary epithelial cells. J Cell Physiol 234:537–549

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Hosaka T, Harada N, Nakaya Y, Funaki M (2013) Activation of Akt through 5-HT2A receptor ameliorates serotonin-induced degradation of insulin receptor substrate-1 in adipocytes. Mol Cell Endocrinol 365:25–35

    Article  CAS  PubMed  Google Scholar 

  • Luo C, Qi H, Huang X, Li M, Zhang L, Lin Y, Gao X (2019) GlyRS is a new mediator of amino acid-induced milk synthesis in bovine mammary epithelial cells. J Cell Physiol 23:2973–2983

    Article  CAS  Google Scholar 

  • Ma L, Corl BA (2012) Transcriptional regulation of lipid synthesis in bovine mammary epithelial cells by sterol regulatory element binding protein-1. J Dairy Sci 95:3743–3755

    Article  CAS  PubMed  Google Scholar 

  • Mayer SC, Banker AL, Boschelli F, Di L, Johnson M, Kenny CH, Krishnamurthy G, Kutterer K, Moy F, Petusky S, Ravi M, Tkach D, Tsou HR, Xu W (2008) Lead identification to generate isoquinolinedione inhibitors of insulin-like growth factor receptor (IGF-1R) for potential use in cancer treatment. Bioorg Med Chem Lett 18:3641–3645

    Article  CAS  PubMed  Google Scholar 

  • Pasiakos SM, McClung HL, McClung JP, Margolis LM, Andersen NE, Cloutier GJ, Pikosky MA, Rood JC, Fielding RA, Young AJ (2011) Leucine-enriched essential amino acid supplementation during moderate steady state exercise enhances postexercise muscle protein synthesis. Am J Clin Nutr 94:809–818

    Article  CAS  PubMed  Google Scholar 

  • Péterfy M, Harris TE, Fujita N, Reue K (2010) Insulin-stimulated interaction with 14-3-3 promotes cytoplasmic localization of lipin-1 in adipocytes. J Biol Chem 285:3857–3864

    Article  PubMed  CAS  Google Scholar 

  • Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E, Guertin DA, Madden KL, Carpenter AE, Finck BN, Sabatini DM (2011) mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146:408–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proud CG (2007) Amino acids and mTOR signalling in anabolic function. Biochem Soc Trans 35:1187–1190

    Article  CAS  PubMed  Google Scholar 

  • Seo SB, Lee JJ, Yun HH, Im CN, Kim YS, Ko JH, Lee JH (2018) 14-3-3β depletion drives a senescence program in glioblastoma cells through the ERK/SKP2/p27 pathway. Mol Neurobiol 55:1259–1270

    Article  CAS  PubMed  Google Scholar 

  • Shumway SD, Li Y, Xiong Y (2003) 14-3-3beta binds to and negatively regulates the tuberous sclerosis complex 2 (TSC2) tumor suppressor gene product, tuberin. J Biol Chem 278:2089–2092

    Article  CAS  PubMed  Google Scholar 

  • Spence SL, Dey BR, Terry C, Albert P, Nissley P, Furlanetto RW (2003) Interaction of 14-3-3 proteins with the insulin-like growth factor I receptor (IGFIR): evidence for a role of 14-3-3 proteins in IGFIR signaling. Biochem Biophys Res Commun 312:1060–1066

    Article  CAS  PubMed  Google Scholar 

  • Takihara Y, Matsuda Y, Hara J (2000) Role of the beta isoform of 14-3-3 proteins in cellular proliferation and oncogenic transformation. Carcinogenesis 21:2073–2077

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Lin Y, Bian Y, Liu L, Shao L, Lin L, Qu B, Zhao F, Gao X, Li Q (2014) Leucyl-tRNA synthetase regulates lactation and cell proliferation via mTOR signaling in dairy cow mammary epithelial cells. Int J Mol Sci 15:5952–5969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weinert M, Millet A, Jonas EA, Alavian KN (2019) The mitochondrial metabolic function of DJ-1 is modulated by 14-3-3β. FASEB J 33:8925–8934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia X, Che Y, Gao Y, Zhao S, Ao C, Yang H, Liu J, Liu G, Han W, Wang Y, Lei L (2016) Arginine supplementation recovered the IFN-γ-mediated decrease in milk protein and fat synthesis by inhibiting the GCN2/eIF2α pathway, which induces autophagy in primary bovine mammary epithelial cells. Mol Cells 39:410–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Luo J, Tian H, Li J, Zhang X, Chen Z, Li M, Loor JJ (2018) Rapid communication: lipid metabolic gene expression and triacylglycerol accumulation in goat mammary epithelial cells are decreased by inhibition of SREBP-1. J Anim Sci 96:2399–2407

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin Y, Hua H, Li M, Liu S, Kong Q, Shao T, Wang J, Luo Y, Wang Q, Luo T, Jiang Y (2016) mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR. Cell Res 26:46–65

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Wang Y, Wang Z, Liu Y, Yu Y, Gao X (2019) Taurine promotes milk synthesis via the GPR87-PI3K-SETD1A signaling in BMECs. J Agric Food Chem 67:1927–1936

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Chen D, Zhen Z, Ao J, Yuan X, Gao X (2018a) Annexin A2 positively regulates milk synthesis and proliferation of bovine mammary epithelial cells through the mTOR signaling pathway. J Cell Physiol 233:2464–2475

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Ma H, Gao Y, Wu Y, Qiao Y, Geng A, Cai C, Han Y, Zeng YA, Liu X, Ge G (2018b) Th-POK regulates mammary gland lactation through mTOR-SREBP pathway. PLoS Genet 14:e1007211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Karas M, Zhao H, Yakar S, LeRoith D (2004) 14-3-3sigma mediation of cell cycle progression is p53-independent in response to insulin-like growth factor-I receptor activation. J Biol Chem 279:34353–34360

    Article  CAS  PubMed  Google Scholar 

  • Zhao F, Liu C, Hao YM, Qu B, Cui YJ, Zhang N, Gao XJ, Li QZ (2015) Up-regulation of integrin α6β4 expression by mitogens involved in dairy cow mammary development. Vitro Cell Dev Biol Anim 51(3):287–299

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all the members of the laboratory who contributed to sample determination.

Funding

This work was supported by the National Natural Science Foundation of China (31101784), “Young Talents” Project of Northeast Agricultural University (14QC43), and Heilongjiang Provincial Funding for National Subjects (GX18B023).

Author information

Authors and Affiliations

Authors

Contributions

Na Zhang contributed to this work and was the first author. Na Zhang and Hui Cao conceived and performed most of the experiments. Hui Cao and Guan Huang performed part of experiments. Na Zhang supervised the work and revised the final version of the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Na Zhang.

Ethics declarations

Ethics approval

Relative experiments in this study were approved by the Animal Care Committee of the Northeast Agricultural University. All procedures involving dairy cows were conducted according to the Guideline for Animal Experiments of Northeast Agricultural University (Harbin, China).

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, H., Huang, G., Fu, H. et al. 14-3-3β is essential for milk composition stimulated by Leu/IGF-1 via IGF1R signaling pathway in BMECs. In Vitro Cell.Dev.Biol.-Animal 58, 384–395 (2022). https://doi.org/10.1007/s11626-022-00682-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-022-00682-x

Keywords

Navigation