Skip to main content
Log in

LncRNA HOTAIR promotes proliferation and suppresses apoptosis of mouse spermatogonium GC-1 cells by sponging miR-761 to modulate NANOS2 expression

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

LncRNA HOX antisense intergenic RNA (HOTAIR) can regulate cancer-related gene expression and promote stem cell and tumor cell proliferation via mechanisms including the competing endogenous RNA (ceRNA) mechanism. HOTAIR is abundantly expressed in the genital tubercle of E11.5, E12.5, and E13.5 embryos, whereas it became barely detectable at E13.5 and expressed again in adult mouse testis. However, the underlying function and mechanism of HOTAIR in spermatogenesis have not been elucidated. Interestingly, other researchers reported that the function of gene Nanos C2HC-Type Zinc Finger 2 (nanos2) includes the maintenance of both the primordial germ cells (PGCs) and germline stem cells, and Nanos2 protein and transcripts (NANOS2) were detected only in PGCs from day E11.5 and undifferentiated spermatogonia in spermatogenesis. We therefore investigated the relationship between HOTAIR and NANOS2 in maintaining spermatogonial stem cell population. We found that, compared to the adult mouse, the expression levels of HOTAIR and NANOS2 in embryo mouse were significantly higher and miR-761expression level was lower. In mouse GC-1 spermatogonia cells, overexpression of miRNA-761 significantly inhibited the expression of NANOS2 and HOTAIR, suppressed the proliferation, and promotes apoptosis of cells. Knock down and overexpression of HOTAIR indicated that HOTAIR expression was positively correlated with NANOS2 expression; overexpressed HOTAIR could promote proliferation and suppresses apoptosis of GC-1 cells. By a rescue experiment and dual luciferase reporter assay, miR-761 was identified as a direct target of HOTAIR, and NANOS2 was identified as the direct target of miR-761. The above results indicate that HOTAIR promotes proliferation and suppresses apoptosis of mouse spermatogonium GC-1 cells by sponging miR-761 to modulate NANOS2 expression. Our findings elucidate one of possible mechanisms and importance of HOTAIR in maintaining spermatogonial stem cell population, and provide new candidate genes and possible pathogenesis for male infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  • Barrios F, Filipponi D, Pellegrini M, Paronetto MP, Siena SD, Geremia R, Rossi P, Felici MD, Jannini EA, Dolci S (2010) Opposing effects of retinoic acid and FGF9 on Nanos2 expression and meiotic entry of mouse germ cells. J Cell Sci 123:871–880

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Guo R, Yuan Z, Shi HR, Zhanget DY (2018) LncRNA HOTAIR regulates CCND1 and CCND2 expression by sponging miR-206 in ovarian cancer. Cell Physiol Biochem 49:1289–1303

    Article  CAS  PubMed  Google Scholar 

  • Dexheimer PJ, Cochella L (2020) MicroRNAs: from mechanism to organism. Front Cell Dev Biol 8:409

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhanoa JK, Sethi RS, Verma R, Arora JS, Mukhopadhyay CS (2018) Long non-coding RNA: its evolutionary relics and biological implications in mammals: a review. J Anim Sci Technol 60:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K et al (2014) Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics 13:397–406

    Article  CAS  PubMed  Google Scholar 

  • Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonçalves TJM, Armand AS (2017) Non-coding RNAs in skeletal muscle regeneration. Noncoding RNA Res 2:56–67

    Article  PubMed  PubMed Central  Google Scholar 

  • Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL et al (2010) Long noncoding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajjari M, Behmanesh M, Sadeghizadeh M, Zeinoddini M (2013) Up-regulation of HOTAIR long noncoding RNA in human gastric adenocarcinoma tissues. Med Oncol 30:670

    Article  PubMed  CAS  Google Scholar 

  • Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293:1146–1150

    Article  CAS  PubMed  Google Scholar 

  • Hutvagner G, Zamore PD (2002) A microRNA in a multiple turnover RNAi enzyme complex. Science 297:2056–2060

    Article  CAS  PubMed  Google Scholar 

  • Kiriakidou M, Tan GS, Lamprinaki S, De Planell-Saguer M, Nelson PT, Mourelatos Z (2007) An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129:1141–1151

    Article  CAS  PubMed  Google Scholar 

  • Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, Tanaka F, Shibata K, Suzuki A, Komune S et al (2011) Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res 71:6320–6326

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  CAS  PubMed  Google Scholar 

  • Marchese FP, Huarte M (2014) Long non-coding RNAs and chromatin modifiers: their place in the epigenetic code. Epigenetics 9:21–26

    Article  CAS  PubMed  Google Scholar 

  • Martianov I, Ramadass A, Serra Barros A, Chow N, Akoulitchev A (2007) Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445:666–670

    Article  CAS  PubMed  Google Scholar 

  • Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563–574

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Lindahl M, Hyvonen ME, Parvinen M, de Rooij DG, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H, Lakso M et al (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287:1489–1493

    Article  CAS  PubMed  Google Scholar 

  • Nielsen CB, Shomron N, Sandberg R, Hornstein E, Kitzman J, Burge CB (2007) Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA 13:1894–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey V, Tripathi A, Dubey PK (2019) Expression and intracellular localization of Nanos2-homologue protein in primordial germ cells and spermatogonial stem cells. Zygote 27:82–88

    Article  CAS  PubMed  Google Scholar 

  • Peterson SM, Thompson JA, Ufkin ML, Sathyanarayana P, Liaw L, Congdon CB (2014) Common features of microRNA target prediction tools. Front Genet 5:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pui HP, Saga Y (2018) NANOS2 acts as an intrinsic regulator of gonocytes-to-spermatogonia transition in the murine testes. Mech Dev 149:27–40

    Article  CAS  PubMed  Google Scholar 

  • Saba R, Kato Y, Saga Y (2014) NANOS2 promotes male germ cell development independent of meiosis suppression. Dev Biol 385:32–40

    Article  CAS  PubMed  Google Scholar 

  • Saga Y (2010) Function of Nanos2 in the male germ cell lineage in mice. Cell Mol Life Sci 67:3815–3822

    Article  CAS  PubMed  Google Scholar 

  • Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schorderet P, Duboule D (2011) Structural and functional differences in the long non-coding RNA hotair in mouse and human. PLoS Genet 7:e1002071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki A, Saga Y (2008) Nanos2 suppresses meiosis and promotes male germ cell differentiation. Genes Dev 22:430–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki H, Sada A, Yoshida S, Saga Y (2009) The heterogeneity of spermatogonia is revealed by their topology and expression of marker proteins including the germ cell-specific proteins Nanos2 and Nanos3. Dev Biol 336:222–231

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Tsuda M, Saga Y (2007) Functional redundancy among Nanos proteins and a distinct role of Nanos2 during male germ cell development. Development 134:77–83

    Article  CAS  PubMed  Google Scholar 

  • Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505:344–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuda M, Sasaoka Y, Kiso M, Abe K, Haraguchi S, Kobayashi S, Saga Y (2003) Conserved role of Nanos proteins in germ cell development. Science 301:1239–1241

    Article  CAS  PubMed  Google Scholar 

  • Uesaka M, Agata K, Oishi T, Nakashima K, Imamura T (2017) Evolutionary acquisition of promoter-associated non-coding RNA (pancRNA) repertoires diversifies species-dependent gene activation mechanisms in mammals. BMC Genomics 18:285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Bragt MP, Roepers-Gajadien HL, Korver CM, Bogerd J, Okuda A, Eggen BJ, de Rooij DG, van Pelt AM (2008) Expression of the pluripotency marker UTF1 is restricted to a subpopulation of early A spermatogonia in rat testis. Reproduction 136:33–40

    Article  PubMed  CAS  Google Scholar 

  • Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White NM, Cabanski CR, Silva-Fisher JM, Dang HX, Govindan R, Maher CA (2014) Transcriptome sequencing reveals altered long intergenic noncoding RNAs in lung cancer. Genome Biol 15:429

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu ZY, Chen H, Yang B, Liu XF, Zhou XL, Kong HF (2019) The association of HOTAIR with the diagnosis and prognosis of gastric cancer and its effect on the proliferation of gastric cancer cells. Can J Gastroenterol Hepatol 2019:3076345. https://doi.org/10.1155/2019/3076345

  • Yu H, Rong L (2018) Emerging role of long non-coding RNA in the development of gastric cancer. World J Gastrointest Oncol 10:260–270

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu M, Mu H, Niu Z, Chu Z, Zhu H, Hua J (2014) miR-34c enhances mouse spermatogonial stem cells differentiation by targeting Nanos2. J Cell Biochem 115:232–242

    Article  CAS  PubMed  Google Scholar 

  • Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, Sandstrom R, Ma Z, Davis C, Pope BD et al (2014) A comparative encyclopedia of DNA elements in the mouse genome. Nature 515:355–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Cheng J, Wu Y, Qiu J, Sun Y, Tong X (2016) LncRNA HOTAIR controls the expression of Rab22a by sponging miR-373 in ovarian cancer. Mol Med Rep 14:2465–2472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely thank all members of the Department of Reproductive Medical Center at the First Affiliated Hospital of Wenzhou Medical University.

Funding

This work was supported by the Science and Technology Bureau of Wenzhou, China (Grant Y20180065) and the National Key Research and Development Program of China (2017YFC1002001).

Author information

Authors and Affiliations

Authors

Contributions

Xiangbin Kong designed the study and its analytic strategy and wrote the original draft. Didi Wu assisted in bioinformatic analysis and technical guidance. Qianjin Fei, Chengshuang Pan, Jianyuan Jin, Jiujia Zheng, and Didi Wu performed the research. Honggang Li and Xuefeng Huang designed the research study and edited the original draft. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Honggang Li or Xuefeng Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, X., Fei, Q., Pan, C. et al. LncRNA HOTAIR promotes proliferation and suppresses apoptosis of mouse spermatogonium GC-1 cells by sponging miR-761 to modulate NANOS2 expression. In Vitro Cell.Dev.Biol.-Animal 58, 295–306 (2022). https://doi.org/10.1007/s11626-022-00657-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-022-00657-y

Keywords

Navigation