Skip to main content
Log in

MiRNA-122-5p inhibitor abolishes angiotensin II–mediated loss of autophagy and promotion of apoptosis in rat cardiofibroblasts by modulation of the apelin-AMPK-mTOR signaling

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) have emerged as essential regulators that could have pivotal roles in cardiac homeostasis and pathological remodeling of various cardiovascular diseases. We previously demonstrated that miRNA-122-5p overexpression exacerbated the process of vascular hypertrophy, fibrosis, and dysfunction in hypertensive rats and rat aortic adventitial fibroblasts. However, the exact roles and underlying mechanisms of miRNA-122-5p in myocardial fibroblasts remain largely unknown. In this work, neonatal rat cardiofibroblasts (CFs) were isolated and primarily cultured from the hearts of 2- to 3-d-old Sprague–Dawley rats. Stimulation of angiotensin II (Ang II) resulted in marked increases in cellular proliferation and migration and levels of collagen I, collagen III, CTGF, and TGF-β1 in cultured CFs. Furthermore, Ang II led to promoted expression of P62, Bax, and phosphorylated mTOR as well as downregulation of LC3II, beclin-1, and AMPK-phosphorylated levels, thereby contributing to imbalance of autophagy and apoptosis, and cellular injury in CFs, which were significantly ameliorated by treatment with miRNA-122-5p inhibitor. These changes were associated with decreased levels of collagen I, collagen III, CTGF, and TGF-β1. Furthermore, Ang II–induced loss of autophagy and promotion of apoptosis in CFs were prevented by the treatment with Pyr1-apelin-13 or AMPK agonist AICAR or mTOR inhibitor rapamycin, respectively. In contrast, administration of miRNA-122-5p mimics and autophagy inhibitor 3-methylademine reversed beneficial roles of Pyr1-apelin-13. Collectively, these data indicated that miRNA-122-5p is an essential regulator of autophagy and apoptosis in rat CFs via the apelin/AMPK/mTOR signaling pathway, which may be potentially used as a therapeutic target in myocardial fibrosis and related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Funding

This research program was supported by Natural Science Foundation of Beijing (#7222068) and the National Natural Science Foundation of China (#92168117; 81770253; 91849111; 91339108).

Author information

Authors and Affiliations

Authors

Contributions

YM and ZJC conceived the study and designed the experiments, and wrote the manuscript. SJJ contributed to data collection. YXC performed data analysis and interpreted the results. ZGZ and ZJC contributed to critical revision of the article. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Guang-Zhen Zhong or Jiu-Chang Zhong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Song, JJ., Yang, XC. et al. MiRNA-122-5p inhibitor abolishes angiotensin II–mediated loss of autophagy and promotion of apoptosis in rat cardiofibroblasts by modulation of the apelin-AMPK-mTOR signaling. In Vitro Cell.Dev.Biol.-Animal 58, 136–148 (2022). https://doi.org/10.1007/s11626-022-00651-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-022-00651-4

Keywords

Navigation