Skip to main content

Advertisement

Log in

Delineating cell behavior and metabolism of non-melanoma skin cancer in vitro

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Non-melanoma skin cancers - basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) - are the most frequent forms of malignant neoplasm in humans worldwide. The etiology of these carcinomas is multifactorial. In addition to the harmful effect of UV light, altered cross-talk between neoplastic epithelial cells and the supporting dermal fibroblasts contributes to the regulation of tumor cell behavior, growth and survival. Metabolic cooperation between these cell types allows them to adapt and react to changes in their surrounding microenvironment by modifying their cellular bioenergetics and biosynthesis. We characterized the growth, behavior, and metabolic activity of human BCC cells, E-cadherin-competent SCC cells and E-cadherin-suppressed SCC cells in the presence or absence of dermal fibroblasts. In mono-cultures and co-cultures, BCC and SCC cells demonstrated distinct morphology, growth and organizational patterns. These tumor cells also exhibited unique patterns of consumption and secretion profiles of glucose, lactate, acetate, glutamine, glutamate, and pyruvate. In comparison to mono-cultures, growth of fibroblasts with either BCC cells or SCC cells enriched the cell growth environment, allowed for metabolic cooperation between these two cell types, and resulted in alterations in the metabolic profiles of the co-cultures. These alterations were affected by the cancer cell type, culture confluence and the composition of the growth medium. Characterizing the bioenergetics of BCC and SCC cells in the context of tumor-stromal interactions is not only important for further understanding of tumor pathogenesis, but also can illuminate potential new targets for novel, metabolic-based therapies for non-melanoma skin cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen E, Mieville P, Warren CM, Saghafinia S, Li L, Peng MW, Hanahan D (2016) Metabolic symbiosis enables adaptive resistance to anti-angiogenic therapy that is dependent on mTOR signaling. Cell Rep 15:1144–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alt-Holland A, Shamis Y, Riley KN, DesRochers TM, Fusenig NE, Herman IM, Garlick JA (2008) E-cadherin suppression directs cytoskeletal rearrangement and intraepithelial tumor cell migration in 3D human skin equivalents. J Invest Dermatol 128:2498–2507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alt-Holland A, Sowalsky AG, Szwec-Levin Y, Shamis Y, Hatch H, Feig LA, Garlick JA (2011) Suppression of E-cadherin function drives the early stages of Ras-induced squamous cell carcinoma through upregulation of FAK and Src. J Invest Dermatol 131:2306–2315

    CAS  PubMed  PubMed Central  Google Scholar 

  • American Cancer Society (2019) Cancer facts and figures 2019. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2019.html. Cited (15 Jul 2019)

  • Apicella M, Giannoni E, Fiore S, Ferrari KJ, Fernandez-Perez D, Isella C, Granchi C, Minutolo F, Sottile A, Comoglio PM, Medico E, Pietrantonio F, Volante M, Pasini D, Chiarugi P, Giordano S, Corso S (2018) Increased lactate secretion by cancer cells sustains non-cell-autonomous adaptive resistance to MET and EGFR targeted therapies. Cell Metab 28(848–865):e846

    Google Scholar 

  • Bai J, Kito Y, Okubo H, Nagayama T, Takeuchi T (2014) Expression of ZNF396 in basal cell carcinoma. Arch Dermatol Res 306:399–404

    CAS  PubMed  Google Scholar 

  • Beishon M (2015) Targeting the supply lines: metabolic approaches to killing cancer cells. CancerWorld, May–June, pp 14–28

    Google Scholar 

  • Bissell MJ, Labarge MA (2005) Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell 7:17–23

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1:46–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonuccelli G, Tsirigos A, Whitaker-Menezes D, Pavlides S, Pestell RG, Chiavarina B, Frank PG, Flomenberg N, Howell A, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2010) Ketones and lactate "fuel" tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9:3506–3514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boukamp P, Fusenig NE (1993) "trans-differentiation" from epidermal to mesenchymal/myogenic phenotype is associated with a drastic change in cell-cell and cell-matrix adhesion molecules. J Cell Biol 120:981–993

    CAS  PubMed  Google Scholar 

  • Boukamp P, Stanbridge EJ, Foo DY, Cerutti PA, Fusenig NE (1990) C-ha-ras oncogene expression in immortalized human keratinocytes (HaCaT) alters growth potential in vivo but lacks correlation with malignancy. Cancer Res 50:2840–2847

    CAS  PubMed  Google Scholar 

  • Carlson MW, Alt-Holland A, Egles C, Garlick JA (2008) Three-dimensional tissue models of normal and diseased skin. Curr Protoc cell biol chapter 19:unit 19.19

  • Cavallaro U, Christofori G (2004) Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4:118–132

    CAS  PubMed  Google Scholar 

  • Conacci-Sorrell M, Zhurinsky J, Ben-Ze'ev A (2002) The cadherin-catenin adhesion system in signaling and cancer. J Clin Invest 109:987–991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crowson AN (2006) Basal cell carcinoma: biology, morphology and clinical implications. Mod Pathol 19(Suppl 2):S127–S147

    PubMed  Google Scholar 

  • Dai X, Luo Y, Xu Y, Zhang J (2019) Key indexes and the emerging tool for tumor microenvironment editing. Am J Cancer Res 9:1027–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dang CV (2010) Glutaminolysis: supplying carbon or nitrogen or both for cancer cells? Cell Cycle 9:3884–3886

    CAS  PubMed  Google Scholar 

  • Daye D, Wellen KE (2012) Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin Cell Dev Biol 23:362–369

    CAS  PubMed  Google Scholar 

  • Di Gennaro P, Sestini R, Bacci S, Pacini A, Pinzani P, Domenici L, Toscano A, Massi D, Carli P, Genuardi M, Romagnoli P (2009) Tacrolimus causes reduced GLI1 expression and phenotypic changes in the TE 354.T basal cell carcinoma cell line. J Dermatol Sci 54:52–54

    PubMed  Google Scholar 

  • Dlugosz A, Merlino G, Yuspa SH (2002) Progress in cutaneous cancer research. J Investig Dermatol Symp Proc 7:17–26

    PubMed  Google Scholar 

  • Epstein EH (2008) Basal cell carcinomas: attack of the hedgehog. Nat Rev Cancer 8:743–754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feron O (2009) Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol 92:329–333

    CAS  PubMed  Google Scholar 

  • Fusenig NE, Boukamp P (1998) Multiple stages and genetic alterations in immortalization, malignant transformation, and tumor progression of human skin keratinocytes. Mol Carcinog 23:144–158

    CAS  PubMed  Google Scholar 

  • Gabbott CM, Sun T (2018) Comparison of human dermal fibroblasts and HaCat cells cultured in medium with or without serum via a generic tissue engineering research platform Int J Mol Sci:19(2):388.

  • Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B, Gillies RJ (2006) Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res 66:5216–5223

    CAS  PubMed  Google Scholar 

  • Gomez-Ospina N, Chang AL, Qu K, Oro AE (2012) Translocation affecting sonic hedgehog genes in basal-cell carcinoma. N Engl J Med 366:2233–2234

    CAS  PubMed  Google Scholar 

  • Griffin JL, Shockcor JP (2004) Metabolic profiles of cancer cells. Nat Rev Cancer 4:551–561

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  PubMed  Google Scholar 

  • Hirschhaeuser F, Sattler UG, Mueller-Klieser W (2011) Lactate: a metabolic key player in cancer. Cancer Res 71:6921–6925

    CAS  PubMed  Google Scholar 

  • Icard P, Kafara P, Steyaert JM, Schwartz L, Lincet H (2014) The metabolic cooperation between cells in solid cancer tumors. Biochim Biophys Acta 1846:216–225

    CAS  PubMed  Google Scholar 

  • Jang M, Kim SS, Lee J (2013) Cancer cell metabolism: implications for therapeutic targets. Exp Mol Med 45:e45

    PubMed  PubMed Central  Google Scholar 

  • Jodele S, Blavier L, Yoon JM, DeClerck YA (2006) Modifying the soil to affect the seed: role of stromal-derived matrix metalloproteinases in cancer progression. Cancer Metastasis Rev 25:35–43

    CAS  PubMed  Google Scholar 

  • Kennedy KM, Scarbrough PM, Ribeiro A, Richardson R, Yuan H, Sonveaux P, Landon CD, Chi JT, Pizzo S, Schroeder T, Dewhirst MW (2013) Catabolism of exogenous lactate reveals it as a legitimate metabolic substrate in breast cancer. PLoS One 8:e75154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kivisaari A, Kahari VM (2013) Squamous cell carcinoma of the skin: emerging need for novel biomarkers. World J Clin Oncol 4:85–90

    PubMed  PubMed Central  Google Scholar 

  • Leith JT, Davis PJ, Mousa SA, Hercbergs AA (2017) In vitro effects of tetraiodothyroacetic acid combined with X-irradiation on basal cell carcinoma cells. Cell Cycle 16:367–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim YZ, South AP (2014) Tumour-stroma crosstalk in the development of squamous cell carcinoma. Int J Biochem Cell Biol 53:450–458

    CAS  PubMed  Google Scholar 

  • Liu X, Cooper DE, Cluntun AA, Warmoes MO, Zhao S, Reid MA, Liu J, Lund PJ, Lopes M, Garcia BA, Wellen KE, Kirsch DG, Locasale JW (2018) Acetate production from glucose and coupling to mitochondrial metabolism in mammals. Cell 175(502–513):e513

    Google Scholar 

  • Margulis A, Zhang W, Alt-Holland A, Crawford HC, Fusenig NE, Garlick JA (2005) E-cadherin suppression accelerates squamous cell carcinoma progression in three-dimensional, human tissue constructs. Cancer Res 65:1783–1791

    CAS  PubMed  Google Scholar 

  • Margulis A, Zhang W, Alt-Holland A, Pawagi S, Prabhu P, Cao J, Zucker S, Pfeiffer L, Garfield J, Fusenig NE, Garlick JA (2006) Loss of intercellular adhesion activates a transition from low- to high-grade human squamous cell carcinoma. Int J Cancer 118:821–831

    CAS  PubMed  Google Scholar 

  • McAllister SS, Weinberg RA (2010) Tumor-host interactions: a far-reaching relationship. J Clin Oncol 28:4022–4028

    PubMed  Google Scholar 

  • Mueller MM, Fusenig NE (2002) Tumor-stroma interactions directing phenotype and progression of epithelial skin tumor cells. Differentiation 70:486–497

    PubMed  Google Scholar 

  • Mueller MM, Fusenig NE (2004) Friends or foes - bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849

    CAS  PubMed  Google Scholar 

  • Nakajima EC, Van Houten B (2013) Metabolic symbiosis in cancer: refocusing the Warburg lens. Mol Carcinog 52:329–337

    CAS  PubMed  Google Scholar 

  • Nissinen L, Farshchian M, Riihila P, Kahari VM (2016) New perspectives on role of tumor microenvironment in progression of cutaneous squamous cell carcinoma. Cell Tissue Res 365:691–702

    CAS  PubMed  Google Scholar 

  • Otsuka A, Levesque MP, Dummer R, Kabashima K (2015) Hedgehog signaling in basal cell carcinoma. J Dermatol Sci 78:95–100

    CAS  PubMed  Google Scholar 

  • Park SY, Shin JH, Kee SH (2017) E-cadherin expression increases cell proliferation by regulating energy metabolism through nuclear factor-kappaB in AGS cells. Cancer Sci 108:1769–1777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pattni BS, Jhaveri A, Dutta I, Baleja JD, Degterev A, Torchilin V (2017) Targeting energy metabolism of cancer cells: combined administration of NCL-240 and 2-DG. Int J Pharm 532:149–156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Escuredo J, Dadhich RK, Dhup S, Cacace A, Van Hee VF, De Saedeleer CJ, Sboarina M, Rodriguez F, Fontenille MJ, Brisson L, Porporato PE, Sonveaux P (2016) Lactate promotes glutamine uptake and metabolism in oxidative cancer cells. Cell Cycle 15:72–83

    CAS  PubMed  Google Scholar 

  • Rogers HW, Weinstock MA, Harris AR, Hinckley MR, Feldman SR, Fleischer AB, Coldiron BM (2010) Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch Dermatol 146:283–287

    PubMed  Google Scholar 

  • Russell S, Wojtkowiak J, Neilson A, Gillies RJ (2017) Metabolic profiling of healthy and cancerous tissues in 2D and 3D. Sci Rep 7:15285

    PubMed  PubMed Central  Google Scholar 

  • Sadlonova A, Bowe DB, Novak Z, Mukherjee S, Duncan VE, Page GP, Frost AR (2009) Identification of molecular distinctions between normal breast-associated fibroblasts and breast cancer-associated fibroblasts. Cancer Microenviron 2:9–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schug ZT, Vande Voorde J, Gottlieb E (2016) The metabolic fate of acetate in cancer. Nat Rev Cancer 16:708–717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Q, Le X, Wang B, Abbruzzese JL, Xiong Q, He Y, Xie K (2001) Regulation of vascular endothelial growth factor expression by acidosis in human cancer cells. Oncogene 20:3751–3756

    CAS  PubMed  Google Scholar 

  • Skin Cancer Foundation (2019) Skin Cancer information. https://www.skincancer.org/skin-cancer-information. Cited (15 Jul 2019)

  • Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelley MJ, Gallez B, Wahl ML, Feron O, Dewhirst MW (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan LB, Gui DY, Heiden MG (2016) Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nat Rev Cancer 16:680–693

    CAS  PubMed  Google Scholar 

  • Tom WL, Hurley MY, Oliver DS, Shah MR, Bree AF (2011) Features of basal cell carcinomas in basal cell nevus syndrome. Am J Med Genet A 155A:2098–2104

    PubMed  Google Scholar 

  • Ungefroren H, Sebens S, Seidl D, Lehnert H, Hass R (2011) Interaction of tumor cells with the microenvironment. Cell Commun Signal 9:18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warburg O (1956) On respiratory impairment in cancer cells. Science 124:269–270

    CAS  PubMed  Google Scholar 

  • Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21:297–306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM (2006) Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem 78:4430–4442

    CAS  PubMed  Google Scholar 

  • Wilde L, Roche M, Domingo-Vidal M, Tanson K, Philp N, Curry J, Martinez-Outschoorn U (2017) Metabolic coupling and the reverse Warburg effect in cancer: implications for novel biomarker and anticancer agent development. Semin Oncol 44:198–203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia J, Jia L, Cruz JA, Lim E, Sobsey CA, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A, De Souza A, Zuniga A, Dawe M, Xiong Y, Clive D, Greiner R, Nazyrova A, Shaykhutdinov R, Li L, Vogel HJ, Forsythe I (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37:D603–D610

    CAS  PubMed  Google Scholar 

  • Wu J, Hong Y, Wu T, Wang J, Chen X, Wang Z, Cheng B, Xia J (2018) Stromal-epithelial lactate shuttle induced by tumorderived interleukin1beta promotes cell proliferation in oral squamous cell carcinoma. Int J Mol Med 41:687–696

    CAS  PubMed  Google Scholar 

  • Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS (2012) MetaboAnalyst 2.0--a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40:W127–W133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xylas J, Alt-Holland A, Garlick J, Hunter M, Georgakoudi I (2010) Intrinsic optical biomarkers associated with the invasive potential of tumor cells in engineered tissue models. Biomed Opt Express 1:1387–1400

    PubMed  PubMed Central  Google Scholar 

  • Yang W, Wu YH, Yin D, Koeffler HP, Sawcer DE, Vernier PT, Gundersen MA (2011) Differential sensitivities of malignant and normal skin cells to nanosecond pulsed electric fields. Technol Cancer Res Treat 10:281–286

    CAS  PubMed  Google Scholar 

  • Yap AS, Crampton MS, Hardin J (2007) Making and breaking contacts: the cellular biology of cadherin regulation. Curr Opin Cell Biol 19:508–514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Alt-Holland A, Margulis A, Shamis Y, Fusenig NE, Rodeck U, Garlick JA (2006) E-cadherin loss promotes the initiation of squamous cell carcinoma invasion through modulation of integrin-mediated adhesion. J Cell Sci 119:283–291

    CAS  PubMed  Google Scholar 

  • Zhang Y, Yang JM (2013) Altered energy metabolism in cancer: a unique opportunity for therapeutic intervention. Cancer Biol Ther 14:81–89

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Butler EB, Tan M (2013) Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 4:e532

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by research grants from the Michael J. Rainen Family foundation (to A.A-H.). The work utilized NMR instrumentation that was purchased with funding from a National Institutes of Health SIG grant (S10OD020073). The authors wish to express their gratitude to Dr. Sarah Pagni and Tamar Roomian from the Division of Biostatistics and Experimental Design at Tufts University School of Dental Medicine, for the statistical analysis of the results. We thank Dr. J.A. Garlick (Tufts University School of Dental Medicine) for the gift of E-cadherin-competent and E-cadherin-suppressed SCC cells. We would also like to thank S. Kamlarz and Drs. J. Nolan and R. Tay for their technical assistance, and S. Kasraie for critical comments. We wish to express our heartfelt appreciation to Kristi Schmitt Burr, the Founder and former Executive Director of the BCC Nevus Syndrome Life Support Network, who inspired this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Addy Alt-Holland.

Ethics declarations

This study and experimental protocols were approved by the Institutional Review Board of Tufts University.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editor: Tetsuji Okamoto

Tatiana Mendez and Shawheen Saffari are co-first authors

Electronic supplementary material

ESM 1

(DOCX 14.9 kb)

ESM 2

(DOCX 14.9 kb)

ESM 3

(DOCX 17.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendez, T., Saffari, S., Cowan, J.M. et al. Delineating cell behavior and metabolism of non-melanoma skin cancer in vitro. In Vitro Cell.Dev.Biol.-Animal 56, 165–180 (2020). https://doi.org/10.1007/s11626-019-00416-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-019-00416-6

Keywords

Navigation