Advertisement

Inhibitory effects of Semaphorin 3F as an alternative candidate to anti-VEGF monoclonal antibody on angiogenesis

  • Gamze TanEmail author
Article
  • 84 Downloads

Abstract

Vascular endothelial growth factor (VEGF) inhibition forms the basis for anti-angiogenic therapies. With the methods based on the monoclonal antibody-mediated typical VEGF blockade, pathological angiogenesis in the tumor microenvironment is inhibited and the limitation of tumor growth is provided; however, the existing tumor tissue cannot be intervened. In this study, the anti-angiogenic effects of Semaphorin (SEMA) 3F, which has frequently been reported to have tumor suppressive properties, on a chick chorioallantoic membrane model as well as in vitro cell-cell interactions were investigated and comparatively assessed using anti-VEGF antibody. Vascular endothelial cells and chick embryos were stimulated with 10–16 ng/mL VEGF165 prior to SEMA 3F administration in order to generate pathological vascularization conditions. Both in vitro and in ovo results revealed that SEMA 3F suppressed VEGF165-induced abnormal vascularization more effectively than anti-VEGF. Moreover, the required dose of SEMA 3F was significantly lower than that of anti-VEGF (103 times less under in ovo conditions). In light of these results, SEMA 3F is recommended as an important therapeutic agent for the prevention of pathological angiogenesis. SEMA 3F may offer an effective and efficient anti-angiogenic intervention that can be administered at a lower dose alternative to typical VEGF blocking agents.

Keywords

Angiogenesis Anti-VEGF antibody Chick chorioallantoic membrane Semaphorin 3F VEGF 

Notes

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflicts of interest.

Funding information

This study did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  1. Abdalla AME, Xiao L, Ullah MW, Yu M, Ouyang C, Yang G (2018) Current challenges of cancer anti-angiogenic therapy and the promise of nanotherapeutics. Theranostics 8:533–548PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aggarwal PK, Veron D, Thomas DB, Siegel D, Moeckel G, Kashgarian M, Tufro A (2015) Semaphorin3A promotes advanced diabetic nephropathy. Diabetes 64:1743–1759PubMedCrossRefGoogle Scholar
  3. Armstrong PB, Quigley JP, Sidebottom E (1982) Transepithelial invasion and intramesenchymal infiltration of the chick embryo chorioallantois by tumor cell lines. Cancer Res 42:1826–1837PubMedGoogle Scholar
  4. Arvizo RR, Rana S, Miranda OR, Bhattacharya R, Rotello VM, Mukherjee P (2011) Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomedicine 7:580–587PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bagnard D, Lohrum M, Uziel D, Puschel A, Bolz J (1998) Semaphorins act as attractive and repulsive guidance signals during the development of cortical projections. Development 125:5043–5053PubMedGoogle Scholar
  6. Behar O, Golden JA, Mashimo H, Schoen FJ, Fishman MC (1996) Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature 383:525–528PubMedCrossRefGoogle Scholar
  7. Bhadada SV, Goyal BR, Patel MM (2011) Angiogenic targets for potential disorders. Fundam Clin Pharmacol 25:29–47PubMedCrossRefGoogle Scholar
  8. Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306PubMedCrossRefGoogle Scholar
  9. Bielenberg DR, Hida Y, Shimizu A, Kaipainen A, Kreuter M, Kim CC, Klagsbrun M (2004) Semaphorin 3F, a chemorepulsant for endothelial cells, induces a poorly vascularized, encapsulated, nonmetastatic tumor phenotype. J Clin Invest 114:1260–1271PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bielenberg DR, Seth A, Shimizu A, Pelton K, Cristofaro V, Ramachandran A, Zwaans BMM, Chen C, Krishnan R, Seth M, Huang L, Takashima S, Klagsbrun M, Sullivan MP, Adam RM (2012) Increased smooth muscle contractility in mice deficient for neuropilin 2. Am J Pathol 181:548–559PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bismuth G, Boumsell L (2002) Controlling the immune system through semaphorins. Sci STKE 2002:re4PubMedCrossRefGoogle Scholar
  12. Brown LF, Yeo K, Berse B, Yeo T-K, Senger DR, Dvorak HF, Van De Water L (1992) Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J Exp Med 176:1375–1379PubMedCrossRefGoogle Scholar
  13. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660PubMedCrossRefGoogle Scholar
  14. Carmeliet P, Collen D (1999) Role of vascular endothelial growth factor and vascular endothelial growth factor receptors in vascular development. In: Claesson-Welsh L (ed) Vascular growth factors and angiogenesis. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 133–158CrossRefGoogle Scholar
  15. Cébe Suarez S, Pieren M, Cariolato L, Arn S, Hoffmann U, Bogucki A, Manlius C, Wood J, Ballmer-Hofer K (2006) A VEGF-A splice variant defective for heparan sulfate and neuropilin-1 binding shows attenuated signaling through VEGFR-2. Cell Mol Life Sci 63:2067–2077PubMedCrossRefGoogle Scholar
  16. Christensen CR, Klingelhöfer J, Tarabykina S, Hulgaard EF, Kramerov D, Lukanidin E (1998) Transcription of a novel mouse semaphorin gene, M-semaH, correlates with the metastatic ability of mouse tumor cell lines. Cancer Res 58:1238–1244PubMedGoogle Scholar
  17. Dvorak HF (2003) How tumors make bad blood vessels and stroma. Am J Pathol 162:1747–1757PubMedPubMedCentralCrossRefGoogle Scholar
  18. Ferrara N (2005) VEGF as a therapeutic target in cancer. Oncology 69:11–16PubMedCrossRefGoogle Scholar
  19. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186CrossRefGoogle Scholar
  20. Folkman J (1974) Tumor angiogenesis. Adv Cancer Res 19:331–358PubMedCrossRefGoogle Scholar
  21. Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82:4–6PubMedCrossRefGoogle Scholar
  22. Folkman J, Watson K, Ingber D, Hanahan D (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339:58–61PubMedCrossRefGoogle Scholar
  23. Frezzetti D, Gallo M, Roma C, D'Alessio A, Maiello MR, Bevilacqua S, Normanno N, De Luca A (2016) Vascular endothelial growth factor a regulates the secretion of different angiogenic factors in lung cancer cells. J Cell Physiol 231:1514–1521PubMedCrossRefGoogle Scholar
  24. Goodman C, Kolodkin A, Luo Y, Püschel A, Raper J (1999) Unified nomenclature for the semaphorins/collapsins. Cell 97:551–552CrossRefGoogle Scholar
  25. Gordon MS, Cunningham D (2005) Managing patients treated with bevacizumab combination therapy. Oncology 69:25–33PubMedCrossRefGoogle Scholar
  26. Goshima Y, Ito T, Sasaki Y, Nakamura F (2002) Semaphorins as signals for cell repulsion and invasion. J Clin Invest 109:993–998PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gu C, Giraudo E (2013) The role of semaphorins and their receptors in vascular development and cancer. Exp Cell Res 319:1306–1316PubMedPubMedCentralCrossRefGoogle Scholar
  28. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13:714–726PubMedCrossRefGoogle Scholar
  29. Hota PK, Buck M (2012) Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cell Mol Life Sci 69:3765–3805PubMedCrossRefGoogle Scholar
  30. Hu Z-Q, Zhou S-L, Zhou Z-J, Luo C-B, Chen E-B, Zhan H, Wang P-C, Dai Z, Zhou J, Fan J, Huang X-W (2016) Overexpression of semaphorin 3A promotes tumor progression and predicts poor prognosis in hepatocellular carcinoma after curative resection. Oncotarget 7:51733–51746PubMedPubMedCentralGoogle Scholar
  31. Hurwitz H, Saini S (2006) Bevacizumab in the treatment of metastatic colorectal cancer: safety profile and management of adverse events. Semin Oncol 33:S26–S34PubMedCrossRefGoogle Scholar
  32. Jain RK (2005) Antiangiogenic therapy for cancer: current and emerging concepts. Oncology 19:7–16PubMedGoogle Scholar
  33. Karamysheva AF (2008) Mechanisms of angiogenesis. Biochemistry (Mosc) 73:751–762CrossRefGoogle Scholar
  34. Kavitha CV, Agarwal C, Agarwal R, Deep G (2011) Asiatic acid inhibits pro-angiogenic effects of VEGF and human gliomas in endothelial cell culture models. PLoS One 6:1–12CrossRefGoogle Scholar
  35. Kessler O, Shraga-Heled N, Lange T, Gutmann-Raviv N, Sabo E, Baruch L, Machluf M, Neufeld G (2004) Semaphorin-3F is an inhibitor of tumor angiogenesis. Cancer Res 64:1008–1015PubMedCrossRefGoogle Scholar
  36. Kieran MW, Kalluri R, Cho Y-J (2012) The VEGF pathway in cancer and disease: responses, resistance, and the path forward. Cold Spring Harb Perspect Med 2:1–17CrossRefGoogle Scholar
  37. Kigel B, Varshavsky A, Kessler O, Neufeld G (2008) Successful inhibition of tumor development by specific class-3 semaphorins is associated with expression of appropriate semaphorin receptors by tumor cells. PLoS One 3:1–14CrossRefGoogle Scholar
  38. Kumanogoh A, Kikutani H (2003) Roles of the semaphorin family in immune regulation. Adv Immunol 81:173–198PubMedCrossRefGoogle Scholar
  39. Kunzi-Rapp K, Genze F, Küfer R, Reich E, Hautmann RE, Gschwend JE (2001) Chorioallantoic membrane assay: vascularized 3-dimensional cell culture system for human prostate cancer cells as an animal substitute model. J Urol 166:1502–1507PubMedCrossRefGoogle Scholar
  40. Kusy S, Nasarre P, Chan D, Potiron V, Meyronet D, Gemmill RM, Constantin B, Drabkin HA, Roche J (2005) Selective suppression of in vivo tumorigenicity by semaphorin SEMA3F in lung cancer cells. Neoplasia 7:457–465PubMedPubMedCentralCrossRefGoogle Scholar
  41. Liotta LA, Steeg PS, Stetler-Stevenson WG (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64:327–336PubMedCrossRefGoogle Scholar
  42. Meyer LAT, Fritz J, Pierdant-Mancera M, Bagnard D (2016) Current drug design to target the Semaphorin/Neuropilin/Plexin complexes. Cell Adhes Migr 10:700–708CrossRefGoogle Scholar
  43. Mukherjee P, Bhattacharya R, Wang P, Wang L, Basu S, Nagy JA, Atala A, Mukhopadhyay D, Soker S (2005) Antiangiogenic properties of gold nanoparticles. Clin Cancer Res 11:3530–3534PubMedCrossRefGoogle Scholar
  44. Nagy J, Vasile E, Feng D, Sundberg C, Brown L, Manseau E, Dvorak A, Dvorak H (2002b) VEGF-A induces angiogenesis, arteriogenesis, lymphangiogenesis, and vascular malformations. Cold Spring Harb Symp Quant Biol 67:227–237PubMedCrossRefGoogle Scholar
  45. Nagy JA, Vasile E, Feng D, Sundberg C, Brown LF, Detmar MJ, Lawitts JA, Benjamin L, Tan X, Manseau EJ, Dvorak AM, Dvorak HF (2002a) Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med 196:1497–1506PubMedPubMedCentralCrossRefGoogle Scholar
  46. Nakayama H, Kusumoto C, Nakahara M, Fujiwara A, Higashiyama S (2018) Semaphorin 3F and netrin-1: the novel function as a regulator of tumor microenvironment. Front Physiol 9:1662–1662PubMedPubMedCentralCrossRefGoogle Scholar
  47. Nasarre P, Kusy S, Constantin B, Castellani V, Drabkin HA, Bagnard D, Roche J (2005) Semaphorin SEMA3F has a repulsing activity on breast cancer cells and inhibits E-cadherin-mediated cell adhesion. Neoplasia 7:180–189PubMedPubMedCentralCrossRefGoogle Scholar
  48. Neufeld G, Lange T, Varshavsky A, Kessler O (2007) Semaphorin signaling in vascular and tumor biology. In: Pasterkamp RJ (ed) Semaphorins: receptor and intracellular signaling mechanisms. Springer, New York, US, pp 118–131CrossRefGoogle Scholar
  49. Neufeld G, Shraga-Heled N, Lange T, Guttmann-Raviv N, Herzog Y, Kessler O (2005) Semaphorins in cancer. Front Biosci 10:751–760PubMedCrossRefGoogle Scholar
  50. Plumb JA, Milroy R, Kaye SB (1989) Effects of the pH dependence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay. Cancer Res 49:4435–4440PubMedGoogle Scholar
  51. Potiron VA, Roche J, Drabkin HA (2009) Semaphorins and their receptors in lung cancer. Cancer Lett 273:1–14PubMedCrossRefGoogle Scholar
  52. Potiron VA, Sharma G, Nasarre P, Clarhaut JA, Augustin HG, Gemmill RM, Roche J, Drabkin HA (2007) Semaphorin SEMA3F affects multiple signaling pathways in lung cancer cells. Cancer Res 67:8708–8715PubMedCrossRefGoogle Scholar
  53. Reidy KJ, Aggarwal PK, Jimenez JJ, Thomas DB, Veron D, Tufro A (2013) Excess podocyte semaphorin-3A leads to glomerular disease involving plexinA1-nephrin interaction. Am J Pathol 183:1156–1168PubMedPubMedCentralCrossRefGoogle Scholar
  54. Ren G, Michael LH, Entman ML, Frangogiannis NG (2002) Morphological characteristics of the microvasculature in healing myocardial infarcts. J Histochem Cytochem 50:71–79PubMedCrossRefGoogle Scholar
  55. Ribatti D, Nico B, Vacca A, Roncali L, Burri PH, Djonov V (2001) Chorioallantoic membrane capillary bed: a useful target for studying angiogenesis and anti-angiogenesis in vivo. Anat Rec 264:317–324PubMedCrossRefGoogle Scholar
  56. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674CrossRefGoogle Scholar
  57. Roche J, Boldog F, Robinson M, Robinson L, Varella-Garcia M, Swanton M, Waggoner B, Fishel R, Franklin W, Gemmill R (1996) Distinct 3p21. 3 deletions in lung cancer and identification of a new human semaphorin. Oncogene 12:1289–1297PubMedGoogle Scholar
  58. Schwarz Q, Ruhrberg C (2010) Neuropilin, you gotta let me know: should I stay or should I go? Cell Adhes Migr 4:61–66CrossRefGoogle Scholar
  59. Secomb TW, Konerding MA, West CA, Su M, Young AJ, Mentzer SJ (2003) Microangiectasias: structural regulators of lymphocyte transmigration. Proc Natl Acad Sci U S A 100:7231–7234PubMedPubMedCentralCrossRefGoogle Scholar
  60. Sekido Y, Bader S, Latif F, Chen JY, Duh FM, Wei MH, Albanesi JP, Lee CC, Lerman MI, Minna JD (1996) Human semaphorins a(V) and IV reside in the 3p21.3 small cell lung cancer deletion region and demonstrate distinct expression patterns. Proc Natl Acad Sci U S A 93:4120–4125PubMedPubMedCentralCrossRefGoogle Scholar
  61. Serini G, Valdembri D, Zanivan S, Morterra G, Burkhardt C, Caccavari F, Zammataro L, Primo L, Tamagnone L, Logan M (2003) Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature 424:391–397PubMedCrossRefGoogle Scholar
  62. Shimizu A, Mammoto A, Italiano JE Jr, Pravda E, Dudley AC, Ingber DE, Klagsbrun M (2008) ABL2/ARG tyrosine kinase mediates SEMA3F-induced RhoA inactivation and cytoskeleton collapse in human glioma cells. J Biol Chem 283:27230–27238PubMedPubMedCentralCrossRefGoogle Scholar
  63. Shirvan A, Shina R, Ziv I, Melamed E, Barzilai A (2000) Induction of neuronal apoptosis by semaphorin3A-derived peptide. Mol Brain Res 83:81–93PubMedCrossRefGoogle Scholar
  64. Suzuki K, Kumanogoh A, Kikutani H (2008) Semaphorins and their receptors in immune cell interactions. Nat Immunol 9:17–23PubMedCrossRefGoogle Scholar
  65. Tamagnone L, Comoglio PM (2004) To move or not to move? Semaphorin signalling in cell migration. EMBO Rep 5:356–361PubMedPubMedCentralCrossRefGoogle Scholar
  66. Tan G, Kantner K, Zhang Q, Soliman M, del Pino P, Parak W, Onur M, Valdeperez D, Rejman J, Pelaz B (2015) Conjugation of polymer-coated gold nanoparticles with antibodies—synthesis and characterization. Nanomaterials 5:1297–1316PubMedPubMedCentralCrossRefGoogle Scholar
  67. Tan G, Onur MA (2017) Anti-proliferative effects of gold nanoparticles functionalized with semaphorin 3F. J Nanopart Res 19:283–298CrossRefGoogle Scholar
  68. Terzioğlu G, Keskin AÜ, Demirel GY (2013) Measurement methods of cell proliferation and a comparison of various commercial proliferation kits. Turk J Immunol 1:74–89CrossRefGoogle Scholar
  69. Tomizawa Y, Sekido Y, Kondo M, Gao B, Yokota J, Roche J, Drabkin H, Lerman MI, Gazdar AF, Minna JD (2001) Inhibition of lung cancer cell growth and induction of apoptosis after reexpression of 3p21. 3 candidate tumor suppressor gene SEMA3B. Proc Natl Acad Sci U S A 98:13954–13959PubMedPubMedCentralCrossRefGoogle Scholar
  70. Tran TS, Kolodkin AL, Bharadwaj R (2007) Semaphorin regulation of cellular morphology. Annu Rev Cell Dev Biol 23:263–292PubMedCrossRefGoogle Scholar
  71. Van Geest RJ, Lesnik-Oberstein SY, Tan HS, Mura M, Goldschmeding R, Van Noorden CJF, Klaassen I, Schlingemann RO (2012) A shift in the balance of vascular endothelial growth factor and connective tissue growth factor by bevacizumab causes the angiofibrotic switch in proliferative diabetic retinopathy. Br J Ophthalmol 96:587–590PubMedPubMedCentralCrossRefGoogle Scholar
  72. Wu F, Zhou Q, Yang J, Duan G-j, Ou J-j, Zhang R, Pan F, Peng Q-p, Tan H, Ping Y-f, Cui Y-h, Qian C, Yan X-c, Bian X-w (2011) Endogenous axon guiding chemorepulsant semaphorin-3F inhibits the growth and metastasis of colorectal carcinoma. Clin Cancer Res 17:2702–2711PubMedCrossRefGoogle Scholar
  73. Xia J, Worzfeld T (2016) Semaphorins and plexins in kidney disease. Nephron 132:93–100PubMedCrossRefGoogle Scholar
  74. Xiang R-H, Hensel CH, Garcia DK, Carlson HC, Kok K, Daly MC, Kerbacher K, van den Berg A, Veldhuis P, Buys CH (1996) Isolation of the human semaphorin III/F gene (SEMA3F) at chromosome 3p21, a region deleted in lung cancer. Genomics 32:39–48PubMedCrossRefGoogle Scholar
  75. Yamaguchi S, Iwata K, Shibuya M (2002) Soluble flt-1 (soluble VEGFR-1), a potent natural antiangiogenic molecule in mammals, is phylogenetically conserved in avians. Biochem Biophys Res Commun 291:554–559PubMedCrossRefGoogle Scholar
  76. Yu W, Bai Y, Han N, Wang F, Zhao M, Huang L, Li X (2013) Inhibition of pathological retinal neovascularization by semaphorin 3A. Mol Vis 19:1397–1405PubMedPubMedCentralGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2019

Authors and Affiliations

  1. 1.Department of Biology, Faculty of Science and LettersAksaray UniversityAksarayTurkey

Personalised recommendations