Advertisement

YY1-induced upregulation of lncRNA NEAT1 contributes to OGD/R injury-induced inflammatory response in cerebral microglial cells via Wnt/β-catenin signaling pathway

  • Dong HanEmail author
  • Yidong Zhou
Article
  • 73 Downloads

Abstract

Stroke can lead to the serious long-term neurological disability. The dysregulation of long non-coding RNAs (lncRNAs) has been proven to be a pivotal factor for the progression of ischemic stroke. However, it is largely unknown whether lncRNAs regulated the OGD/R injury of cerebral microglial cells. In this study, we designed experiments to reveal the role of lncRNA Nuclear Enriched Abundant Transcript 1 (NEAT1) in the OGD/R injury of microglial cells. We found that NEAT1 contributed to the OGD/R injury and neuroinflammation damage in microglial cells. Moreover, the molecular mechanism involved in the NEAT1-mediated OGD/R injury. Mechanism investigation revealed that NEAT1 was upregulated by the transcription factor YY1. Moreover, Western blot analysis suggested that NEAT1 enhance the protein levels of core factors of Wnt/β-catenin signaling pathway, indicating that NEAT1 contributed to the activation of Wnt/β-catenin signaling pathway. Rescue assays were carried out in the microglial cells treated with OGD/R. The results showed that NEAT1 regulated the OGD/R injury and neuroinflammation damage via Wnt/β-catenin signaling pathway. In conclusion, our findings suggested that YY1-induced upregulation of NEAT1 contributed to the OGD/R injury and neuroinflammation damage of microglial cells via Wnt/β-catenin signaling pathway.

Keywords

YY1 lncRNA NEAT1 OGD/R injury Microglial cells Wnt/β-catenin signaling pathway 

Notes

Acknowledgments

The authors sincerely appreciate all lab members.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11626_2019_375_Fig6_ESM.png (43 kb)
ESM 1

The expression of NEAT1 was reduced by transfection of si-NEAT#1/2/3. (PNG 42 kb)

11626_2019_375_MOESM1_ESM.tif (1.3 mb)
High resolution image (TIF 1304 kb)
11626_2019_375_MOESM2_ESM.xlsx (9 kb)
ESM 2 (XLSX 9 kb)

References

  1. Baizabal-Aguirre VM (2017) Editorial: cross-talk mechanisms of Wnt/Beta-catenin signaling components with TLR-activated signaling molecules in the inflammatory response. Front Immunol 8:1396CrossRefGoogle Scholar
  2. Battistelli C, Sabarese G, Santangelo L, Montaldo C, Gonzalez FJ, Tripodi M, Cicchini C (2018) The lncRNA HOTAIR transcription is controlled by HNF4α-induced chromatin topology modulation. Cell Death Differ 26:890–901.  https://doi.org/10.1038/s41418-018-0170-z CrossRefGoogle Scholar
  3. Carniglia L, Ramirez D, Durand D, Saba J, Turati J, Caruso C, Scimonelli TN, Lasaga M (2017) Neuropeptides and microglial activation in inflammation, pain, and neurodegenerative diseases. Mediat Inflamm 2017:5048616.  https://doi.org/10.1155/2017/5048616
  4. Chakravarty D, Sboner A, Nair SS, Giannopoulou E, Li R, Hennig S, Mosquera JM, Pauwels J, Park K, Kossai M, MacDonald TY, Fontugne J, Erho N, Vergara IA, Ghadessi M, Davicioni E, Jenkins RB, Palanisamy N, Chen Z, Nakagawa S, Hirose T, Bander NH, Beltran H, Fox AH, Elemento O, Rubin MA (2014) The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nat Commun 5:5383CrossRefGoogle Scholar
  5. Chen Q, Cai J, Wang Q, Wang Y, Liu M, Yang J, Zhou J, Kang C, Li M, Jiang C (2018a) Long noncoding RNA NEAT1, regulated by the EGFR pathway, contributes to glioblastoma progression through the WNT/beta-catenin pathway by scaffolding EZH2. Clin Cancer Res 24:684–695CrossRefGoogle Scholar
  6. Chen X, Zeng K, Xu M, Hu X, Liu X, Xu T, He B, Pan Y, Sun H, Wang S (2018b) SP1-induced lncRNA-ZFAS1 contributes to colorectal cancer progression via the miR-150-5p/VEGFA axis. Cell Death Dis 9:982CrossRefGoogle Scholar
  7. Cheng L, Zhao Y, Qi D, Li W, Wang D (2018) Wnt/beta-catenin pathway promotes acute lung injury induced by LPS through driving the Th17 response in mice. Biochem Biophys Res Commun 495:1890–1895CrossRefGoogle Scholar
  8. Choudhry H, Albukhari A, Morotti M, Haider S, Moralli D, Smythies J, Schödel J, Green CM, Camps C, Buffa F, Ratcliffe P, Ragoussis J, Harris AL, Mole DR (2015) Tumor hypoxia induces nuclear paraspeckle formation through HIF-2α dependent transcriptional activation of NEAT1 leading to cancer cell survival. Oncogene 34:4482–4490CrossRefGoogle Scholar
  9. Donnan GA, Davis SM (2008) Breaking the 3 h barrier for treatment of acute ischaemic stroke. Lancet Neurol 7:981–982CrossRefGoogle Scholar
  10. Fancy SP, Harrington EP, Baranzini SE, Silbereis JC, Shiow LR, Yuen TJ, Huang EJ, Lomvardas S, Rowitch DH (2014) Parallel states of pathological Wnt signaling in neonatal brain injury and colon cancer. Nat Neurosci 17:506–512CrossRefGoogle Scholar
  11. Gandhy SU, Imanirad P, Jin UH, Nair V, Hedrick E, Cheng Y, Corton JC, Kim K, Safe S (2015) Specificity protein (Sp) transcription factors and metformin regulate expression of the long non-coding RNA HULC. Oncotarget 6.  https://doi.org/10.18632/oncotarget.4560
  12. Gong W, Zheng J, Liu X, Ma J, Liu Y, Xue Y (2016) Knockdown of NEAT1 restrained the malignant progression of glioma stem cells by activating microRNA let-7e. Oncotarget 7:62208–62223Google Scholar
  13. Gu DM, Lu PH, Zhang K, Wang X, Sun M, Chen GQ, Wang Q (2015) EGFR mediates astragaloside IV-induced Nrf2 activation to protect cortical neurons against in vitro ischemia/reperfusion damages. Biochem Biophys Res Commun 457:391–397CrossRefGoogle Scholar
  14. Guo F, Tang C, Li Y, Liu Y, Lv P, Wang W, Mu Y (2018) The interplay of LncRNA ANRIL and miR-181b on the inflammation-relevant coronary artery disease through mediating NF-κB signalling pathway. J Cell Mol Med 22:5062–5075.  https://doi.org/10.1111/jcmm.13790 CrossRefGoogle Scholar
  15. Hu Z, Yang B, Mo X, Zhou F (2016) HspB8 mediates neuroprotection against OGD/R in N2A cells through the phosphoinositide 3-kinase/Akt pathway. Brain Res 1644:15–21CrossRefGoogle Scholar
  16. Huang M, Hou J, Wang Y, Xie M, Wei C, Nie F, Wang Z, Sun M (2017a) Long noncoding RNA LINC00673 is activated by SP1 and exerts oncogenic properties by interacting with LSD1 and EZH2 in gastric cancer. Mol Ther 25:1014–1026.  https://doi.org/10.1016/j.ymthe.2017.01.017 CrossRefGoogle Scholar
  17. Huang W, Lan X, Li X, Wang D, Sun Y, Wang Q, Gao H, Yu K (2017b) Long non-coding RNA PVT1 promote LPS-induced septic acute kidney injury by regulating TNFalpha and JNK/NF-kappaB pathways in HK-2 cells. Int Immunopharmacol 47:134–140CrossRefGoogle Scholar
  18. Jang J, Jung Y, Kim Y, Jho EH, Yoon Y (2017) LPS-induced inflammatory response is suppressed by Wnt inhibitors, Dickkopf-1 and LGK974. Sci Rep 7:41612CrossRefGoogle Scholar
  19. Jauch EC, Saver JL, Adams HP Jr, Bruno A, Connors JJ, Demaerschalk BM, Khatri P, McMullan PW Jr, Qureshi AI, Rosenfield K, Scott PA, Summers DR, Wang DZ, Wintermark M, Yonas H (2013) Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 44:870–947CrossRefGoogle Scholar
  20. Jiang L, Xue W, Wang Y (2018) Inhibition of miR-31a-5p decreases inflammation by down-regulating IL-25 expression in human dermal fibroblast cells (CC-2511 cells) under hyperthermic stress via Wnt/beta-catenin pathway. Biomed Pharmacother 107:24–33CrossRefGoogle Scholar
  21. Jin R, Liu L, Zhang S, Nanda A, Li G (2013) Role of inflammation and its mediators in acute ischemic stroke. J Cardiovasc Transl Res 6:834–851CrossRefGoogle Scholar
  22. Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 87:779–789CrossRefGoogle Scholar
  23. Kiernan EA, Smith SM, Mitchell GS, Watters JJ (2016) Mechanisms of microglial activation in models of inflammation and hypoxia: implications for chronic intermittent hypoxia. J Physiol 594:1563–1577CrossRefGoogle Scholar
  24. Knauss JL, Miao N, Kim SN, Nie Y, Shi Y, Wu T, Pinto HB, Donohoe ME, Sun T (2018) Long noncoding RNA Sox2ot and transcription factor YY1 co-regulate the differentiation of cortical neural progenitors by repressing Sox2. Cell Death Dis 9:799CrossRefGoogle Scholar
  25. Lakhan SE, Kirchgessner A, Hofer M (2009) Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med 7:97.  https://doi.org/10.1186/1479-5876-7-97
  26. Li GY, Wang W, Sun JY, Xin B, Zhang X, Wang T, Zhang QF, Yao LB, Han H, Fan DM, Yang AG, Jia LT, Wang L (2018c) Long non-coding RNAs AC026904.1 and UCA1: a “one-two punch” for TGF-β-induced SNAI2 activation and epithelial-mesenchymal transition in breast cancer. Theranostics 8:2846–2861CrossRefGoogle Scholar
  27. Li R, Fang L, Pu Q, Bu H, Zhu P, Chen Z, Yu M, Li X, Weiland T, Bansal A, Ye SQ, Wei Y, Jiang J, Wu M (2018a) MEG3-4 is a miRNA decoy that regulates IL-1β abundance to initiate and then limit inflammation to prevent sepsis during lung infection. Sci Signal 11:eaao2387CrossRefGoogle Scholar
  28. Li W, Zhang Z, Liu X, Cheng X, Zhang Y, Han X, Zhang Y, Liu S, Yang J, Xu B, He L, Sun L, Liang J, Shang Y (2017) The FOXN3-NEAT1-SIN3A repressor complex promotes progression of hormonally responsive breast cancer. J Clin Invest 127:3421–3440.  https://doi.org/10.1172/jci94233 CrossRefGoogle Scholar
  29. Li X, Wang X, Song W, Xu H, Huang R, Wang Y, Zhao W, Xiao Z, Yang X (2018b) Oncogenic properties of NEAT1 in prostate cancer cells depend on the CDC5L-AGRN transcriptional regulation circuit. Cancer Res 78:4138–4149.  https://doi.org/10.1158/0008-5472.can-18-0688 CrossRefGoogle Scholar
  30. Liu F, Chen N, Gong Y, Xiao R, Wang W, Pan Z (2017) The long non-coding RNA NEAT1 enhances epithelial-to-mesenchymal transition and chemoresistance via the miR-34a/c-Met axis in renal cell carcinoma. Oncotarget 8:62927–62938Google Scholar
  31. Liu HT, Liu S, Liu L, Ma RR, Gao P (2018) EGR1-mediated transcription of lncRNA-HNF1A-AS1 promotes cell cycle progression in gastric cancer. Cancer Res.  https://doi.org/10.1158/0008-5472.can-18-1011
  32. Liu J, Li Q, Zhang KS, Hu B, Niu X, Zhou SM, Li SG, Luo YP, Wang Y, Deng ZF (2016) Downregulation of the long non-coding RNA Meg3 promotes angiogenesis after ischemic brain injury by activating notch signaling. Mol Neurobiol 54:8179–8190.  https://doi.org/10.1007/s12035-016-0270-z CrossRefGoogle Scholar
  33. Louro R, Smirnova AS, Verjovski-Almeida S (2009) Long intronic noncoding RNA transcription: expression noise or expression choice? Genomics 93:291–298CrossRefGoogle Scholar
  34. Lu Z, Li Y, Che Y, Huang J, Sun S, Mao S, Lei Y, Li N, Sun N, He J (2018) The TGFβ-induced lncRNA TBILA promotes non-small cell lung cancer progression in vitro and in vivo via cis-regulating HGAL and activating S100A7/JAB1 signaling. Cancer Lett 432:156–168.  https://doi.org/10.1016/j.canlet.2018.06.013 CrossRefGoogle Scholar
  35. Mehta SL, Kim T, Vemuganti R (2015) Long noncoding RNA FosDT promotes ischemic brain injury by interacting with REST-associated chromatin-modifying proteins. J Neurosci 35:16443–16449CrossRefGoogle Scholar
  36. Micieli G, Marcheselli S, Tosi PA (2009) Safety and efficacy of alteplase in the treatment of acute ischemic stroke. Vasc Health Risk Manag 5:397–409CrossRefGoogle Scholar
  37. Peng J, Wu Y, Tian X, Pang J, Kuai L, Cao F, Qin X, Zhong J, Li X, Li Y, Sun X, Chen L, Jiang Y (2017) High-throughput sequencing and co-expression network analysis of lncRNAs and mRNAs in early brain injury following experimental subarachnoid haemorrhage. Sci Rep 7:46577CrossRefGoogle Scholar
  38. Piccin D, Morshead CM (2011) Wnt signaling regulates symmetry of division of neural stem cells in the adult brain and in response to injury. Stem Cells 29:528–538CrossRefGoogle Scholar
  39. Ponjavic J, Ponting CP, Lunter G (2007) Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 17:556–565CrossRefGoogle Scholar
  40. Ponting CP, Belgard TG (2010) Transcribed dark matter: meaning or myth? Hum Mol Genet 19:R162–R168CrossRefGoogle Scholar
  41. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641CrossRefGoogle Scholar
  42. Qi F, Liu X, Wu H, Yu X, Wei C, Huang X, Ji G, Nie F, Wang K (2017) Long noncoding AGAP2-AS1 is activated by SP1 and promotes cell proliferation and invasion in gastric cancer. J Hematol Oncol 10:48CrossRefGoogle Scholar
  43. Qiu CW, Liu ZY, Hou K, Liu SY, Hu YX, Zhang L, Zhang FL, Lv KY, Kang Q, Hu WY, Ma N, Jiao Y, Bai WJ, Xiao ZC (2018) Wip1 knockout inhibits neurogenesis by affecting the Wnt/beta-catenin signaling pathway in focal cerebral ischemia in mice. Exp Neurol 309:44–53CrossRefGoogle Scholar
  44. Saura J, Tusell JM, Serratosa J (2003) High-yield isolation of murine microglia by mild trypsinization. Glia 44:183–189CrossRefGoogle Scholar
  45. Suo T, Chen GZ, Huang Y, Zhao KC, Wang T, Hu K (2018) miRNA-1246 suppresses acute lung injury-induced inflammation and apoptosis via the NF-kappaB and Wnt/beta-catenin signal pathways. Biomed Pharmacother 108:783–791CrossRefGoogle Scholar
  46. Taiana E, Ronchetti D, Favasuli V, Todoerti K, Manzoni M, Amodio N, Tassone P, Agnelli L, Neri A (2018) Long non-coding RNA NEAT1 shows high expression unrelated to molecular features and clinical outcome in multiple myeloma. Haematologica 104:e72–e76.  https://doi.org/10.3324/haematol.2018.201301 CrossRefGoogle Scholar
  47. Tulsulkar J, Ward A, Shah Z (2017) HO1 and Wnt expression is independently regulated in female mice brains following permanent ischemic brain injury. Brain Res 1662:1–6.  https://doi.org/10.1016/j.brainres.2017.02.006 CrossRefGoogle Scholar
  48. Wang CF, Zhao CC, Weng WJ, Lei J, Lin Y, Mao Q, Gao GY, Feng JF, Jiang JY (2017c) Alteration in long non-coding RNA expression after traumatic brain injury in rats. J Neurotrauma 34:2100–2108.  https://doi.org/10.1089/neu.2016.4642 CrossRefGoogle Scholar
  49. Wang J, Chen T, Shan G (2017a) miR-148b regulates proliferation and differentiation of neural stem cells via Wnt/beta-catenin signaling in rat ischemic stroke model. Front Cell Neurosci 11:329CrossRefGoogle Scholar
  50. Wang X, Sun W, Shen W, Xia M, Chen C, Xiang D, Ning B, Cui X, Li H, Li X, Ding J, Wang H (2016) Long non-coding RNA DILC represses self-renewal of liver cancer stem cells via inhibiting autocrine IL-6/STAT3 Axis. J Hepatol 64:1283–1294.  https://doi.org/10.1016/j.jhep.2016.01.019 CrossRefGoogle Scholar
  51. Wang Y, Wang C, Chen C, Wu F, Shen P, Zhang P, He G, Li X (2017b) Long non-coding RNA NEAT1 regulates epithelial membrane protein 2 expression to repress nasopharyngeal carcinoma migration and irradiation-resistance through miR-101-3p as a competing endogenous RNA mechanism. Oncotarget 8:70156–70171Google Scholar
  52. White BD, Nathe RJ, Maris DO, Nguyen NK, Goodson JM, Moon RT, Horner PJ (2010) Beta-catenin signaling increases in proliferating NG2+ progenitors and astrocytes during post-traumatic gliogenesis in the adult brain. Stem Cells 28:297–307Google Scholar
  53. Wu JC, Luo SZ, Liu T, Lu LG, Xu MY (2018) linc-SCRG1 accelerates liver fibrosis by decreasing RNA-binding protein tristetraprolin. FASEB J.  https://doi.org/10.1096/fj.201800098RR:fj201800098RR
  54. Zeng C, Liu S, Lu S, Yu X, Lai J, Wu Y, Chen S, Wang L, Yu Z, Luo G, Li Y (2018) The c-Myc-regulated lncRNA NEAT1 and paraspeckles modulate imatinib-induced apoptosis in CML cells. Mol Cancer 17:130CrossRefGoogle Scholar
  55. Zhang F, Wu L, Qian J, Qu B, Xia S, La T, Wu Y, Ma J, Zeng J, Guo Q, Cui Y, Yang W, Huang J, Zhu W, Yao Y, Shen N, Tang Y (2016) Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus. J Autoimmun 75:96–104.  https://doi.org/10.1016/j.jaut.2016.07.012 CrossRefGoogle Scholar
  56. Zhang M, Weng W, Zhang Q, Wu Y, Ni S, Tan C, Xu M, Sun H, Liu C, Wei P, Du X (2018) The lncRNA NEAT1 activates Wnt/beta-catenin signaling and promotes colorectal cancer progression via interacting with DDX5. J Hematol Oncol 11:113CrossRefGoogle Scholar
  57. Zhang Q, Chen CY, Yedavalli VS, Jeang KT (2013) NEAT1 long noncoding RNA and paraspeckle bodies modulate HIV-1 posttranscriptional expression. MBio 4:e00596–e00512CrossRefGoogle Scholar
  58. Zhen L, Yun-Hui L, Hong-Yu D, Jun M, Yi-Long Y (2016) Long noncoding RNA NEAT1 promotes glioma pathogenesis by regulating miR-449b-5p/c-Met axis. Tumour Biol 37:673–683CrossRefGoogle Scholar
  59. Zhong J, Jiang L, Huang Z, Zhang H, Cheng C, Liu H, He J, Wu J, Darwazeh R, Wu Y, Sun X (2017) The long non-coding RNA Neat1 is an important mediator of the therapeutic effect of bexarotene on traumatic brain injury in mice. Brain Behav Immun 65:183–194CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2019

Authors and Affiliations

  1. 1.Department of Neurology, Ningbo first hospitalNingboChina

Personalised recommendations