Skip to main content

Advertisement

Log in

A miR-511-binding site SNP in the 3′UTR of IGF-1 gene is associated with proliferation and apoptosis of PK-15 cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Insulin-like growth factor-1 (IGF-1) is a functional candidate gene for pig growth and development due to its crucial role in the growth axis of growth hormone-IGF-1. Considering that the 3′ untranslated region (3′UTR) of gene may affect its expression, we analyzed the effect of a single-nucleotide polymorphism (SNP) (rs34142920, c.674C > T) on gene expression, cell proliferation, and apoptosis and the possible related molecular mechanisms in PK-15 cells. The SNP was found in the 3′UTR of IGF-1 in Bama Xiang pig in previous investigations. Results showed that the SNP was located at the target site binding to microRNA (miR-511). The 3′UTR of IGF-1 gene with C allele significantly downregulated the expression of IGF-1 gene compared with that of the gene with T allele by luciferase assay. miR-511 was transfected into porcine kidney cell line (PK-15 cells) to reveal its effects on cells and whether or not it targets IGF-1. The expression levels of IGF-1 at mRNA and protein levels were remarkably downregulated. miR-511 significantly inhibited cell proliferation and promoted cell apoptosis by downregulating the phosphorylation level of AKT and ERK1/2. This finding confirmed that miR-511 inhibits proliferation and promotes apoptosis by downregulating the IGF-1 in PK-15 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    Article  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  Google Scholar 

  • Beckman BR (2010) Perspectives on concordant and discordant relations between insulin-like growth factor 1 (IGF-1) and growth in fishes. Gen Comp Endocrinol 170(2):233–252

    Article  Google Scholar 

  • Belfiore A, Genua M, Malaguarnera R (2009) PPAR-γ agonists and their effects on IGF-I receptor signaling: implications for cancer. PPAR Res 2009:830501

    Article  CAS  Google Scholar 

  • Biao Y, Zhu C-D, Guo J-T, Zhao L-H, Zhao J-L (2016) miR-206 regulates the growth of the teleost tilapia (Oreochromis niloticus) through the modulation of IGF-1 gene expression. J Exp Biol 216:1265–1269

    Google Scholar 

  • Cheng Y, Liu S, Wang G, Wei W, Huang S, Yang R, Geng H, Li H, Song J, Sun L, Yu H, Hao L (2018) Porcine IGF1 synonymous mutation alter gene expression and protein binding affinity with IGF1R. Int J Biol Macromol 116:23–30

    Article  CAS  Google Scholar 

  • Chowdhury S, Wang X, Srikant CB, Li Q, Fu M, Gong YJ, Ning G, Liu JL (2014) IGF-1 stimulates CCN5/WISP2 gene expression in pancreatic β-cells, which promotes cell proliferation and survival against streptozotocin. Endocrinology 155(5):1629–1642

    Article  Google Scholar 

  • Connerty P, Ahadi A, Hutvagner G (2015) RNA binding proteins in the miRNA pathway. Int J Mol Sci 26(17):1

    Google Scholar 

  • Dominguez F, Moreno-Moya JM, Lozoya T, Romero A, Martínez S, Monterde M, Gurrea M, Ferri B, Núñez MJ, Simón C, Pellicer A (2014) Embryonic miRNA profiles of normal and ectopic pregnancies. PLoS One 11;9(7):e102185

    Article  Google Scholar 

  • Feng X, Huang D, Lu X, Feng G, Xing J, Lu J, Xu K, Gu Z (2014) Insulin-like growth factor 1 can promote proliferation and osteogenic differentiation of human dental pulp stem cells via mTOR pathway. Develop Growth Differ 56(9):615–624

    Article  CAS  Google Scholar 

  • Gooch JL, Van Den Berg CL, Yee D (1999) Insulin-like growth factor (IGF)-I rescues breast cancer cells from chemotherapy-induced cell death—proliferative and anti-apoptotic effects. Breast Cancer Res Treat 56(1):1–10

    Article  CAS  Google Scholar 

  • Han C, Chen X, Zhuang R, Xu M, Liu S, Li Q (2015) miR-29a promotes myocardial cell apoptosis induced by high glucose through down-regulating IGF-1. Int J Clin Exp Med 15;8(8):14352–14362

    Google Scholar 

  • Hayashi Y, Yamamoto N, Nakagawa T, Ito J (2013) Insulin-like growth factor 1 inhibits hair cell apoptosis and promotes the cell cycle of supporting cells by activating different downstream cascades after pharmacological hair cell injury in neonatal mice. Mol Cell Neurosci 56:29–38

    Article  CAS  Google Scholar 

  • Henner S, Köhn F (2014) Genetic management of the Göttingen minipig population. J Pharmacol Toxicol Methods 2010(62):221–226

    Google Scholar 

  • Hu W, Meng X, Lu T, Wu L, Li T, Li M, Tian Y (2013) MicroRNA-1 inhibits the proliferation of Chinese sika deer-derived cartilage cells by binding to the 3′-untranslated region of IGF-1. Mol Med Rep 8(2):523–528

    Article  Google Scholar 

  • Ikink GJ, Boer M, Bakker ER, Hilkens J (2014) IRS4 induces mammary tumorigenesis and confers resistance to HER2-targeted therapy through constitutive PI3K/AKT-pathway hyperactivation. Nat Commun 23(7):13567

    Google Scholar 

  • Jiang H, Wang H, Ge F, Wu L, Wang X, Chen S (2015) The functional variant in the 3'UTR of IGF1 with the risk of gastric cancer in a Chinese population. Cell Physiol Biochem 36(3):884–892

    Article  CAS  Google Scholar 

  • Johnson AM, Kartha CC (2014) Proliferation of murine c-kit(pos) cardiac stem cells stimulated with IGF-1 is associated with Akt-1 mediated phosphorylation and nuclear export of FoxO3a and its effect on downstream cell cycle regulators. Growth Factors 32(2):53–62

    Article  CAS  Google Scholar 

  • Jordan HL, Register TC, Tripathi NK, Bolliger AP, Everds N, Zelmanovic D, Poitout F, Bounous DI, Wescott D, Ramaiah SK (2014) Nontraditional applications in clinical pathology. Toxicol Pathol 42:1058–1068

    Article  Google Scholar 

  • Kropp J, Khatib H (2015) Characterization of microRNA in bovine in vitro culture media associated with embryo quality and development. J Dairy Sci 98(9):6552–6563

    Article  CAS  Google Scholar 

  • Larabee SM, Coia H, Jones S, Cheung E, Gallicano GI (2015) miRNA-17 members that target Bmpr2 influence signaling mechanisms important for embryonic stem cell differentiation in vitro and gastrulation in embryos. Stem Cells Dev 24(3):354–371

    Article  CAS  Google Scholar 

  • Li LM, Huang J, Zhang X, Ju Z, Qi C, Zhang Y, Li Q, Wang C, Miao W, Zhong J, Hou M, Hang S (2012) One SNP in the 3′-UTR of HMGB1 gene affects the binding of target bta-miR-223 and is involved in mastitis in dairy cattle. Immunogenetics 64:817–824

    Article  CAS  Google Scholar 

  • Li M, Ouyang H, Yuan H, Li J, Xie Z, Wang K, Yu T, Liu M, Chen X, Tang X, Jiao H, Pang D (2018) Site-specific Fat-1 knock-in enables significant decrease of n-6PUFAs/n-3PUFAs ratio in pigs. G3 (Bethesda) 8(5):1747–1754

    Article  CAS  Google Scholar 

  • Liu C, Wang M, Chen M, Zhang K, Gu L, Li Q, Yu Z, Li N, Meng Q (2017) miR-18a induces myotubes atrophy by down-regulating IgfI. Int J Biochem Cell Biol 90:145–154

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

  • Ma T, Ouyang T, Ouyang H, Chen F, Peng Z, Chen X, Pang D, Ren L (2017) Porcine circovirus 2 proliferation can be enhanced by stably expressing porcine IL-2 gene in PK-15 cell. Virus Res 227:143–149

    Article  CAS  Google Scholar 

  • Masotti C, Armelin-Correa LM, Splendore A, Lin CJ, Barbosa A, Sogayar MC, Passos-Bueno MR (2005) A functional SNP in the promoter region of TCOF1 is associated with reduced gene expression and YY1 DNA-protein interaction. Gene 10;359:44–52

    Article  Google Scholar 

  • Niu P, Kim SW, Choi BH, Kim TH, Kim JJ (2013) Porcine insulin-like growth factor 1 ( IGF1 ) gene polymorphisms are associated with body size variation. Genes Genomics 35(4):523–528

    Article  CAS  Google Scholar 

  • Ouchi Y, Yamamoto J, Iwamoto T (2014) The heterochronic genes lin-28a and lin-28b play an essential and evolutionarily conserved role in early zebrafish development. PLoS One 9(2):e88086

    Article  Google Scholar 

  • Peng Z, Ouyang T, Pang D, Ma T, Chen X, Guo N, Chen F, Yuan L, Ouyang H, Ren L (2016) Pseudorabies virus can escape from CRISPR-Cas9-mediated inhibition. Virus Res 223:197–205

    Article  CAS  Google Scholar 

  • Perrin AJ, Gunda M, Yu B, Yen K, Ito S, Forster S, Tissenbaum HA, Derry WB (2013a) Noncanonical control of C. elegans germline apoptosis by the insulin/IGF-1 and Ras/MAPK signaling pathways. Cell Death Differ 20(1):97–107

    Article  CAS  Google Scholar 

  • Perrin AJ, Gunda M, Yu B, Yen K, Ito S, Forster S, Tissenbaum HA, Derry WB (2013b) Noncanonical control of C. elegans germline apoptosis by the insulin/IGF-1 and Ras/MAPK signaling pathways. Cell Death Differ 20(1):97–107

    Article  CAS  Google Scholar 

  • Pollak MN, Schernhammer ES, Hankinson SE (2004) Insulin-like growth factors and neoplasia. Nat Rev Cancer 4:505–518

    Article  CAS  Google Scholar 

  • Reindl KM, Sheridan MA (2012) Peripheral regulation of the growth hormone-insulin-like growth factor system in fish and other vertebrates. Comp Biochem Physiol A Mol Integr Physiol 163(3–4):231–245

    Article  CAS  Google Scholar 

  • Ren Y, Li WY, Jifang L (2018) Stocking density affects the growth performance and metabolism of Amur sturgeon by regulating expression of genes in the GH/IGF axis. J Oceanol Limnol 36:956–972

    Article  CAS  Google Scholar 

  • Sampath V, Bhandari V, Berger J, Merchant D, Zhang L, Ladd M, Menden H, Garland J, Ambalavanan N, Mulrooney N, Quasney M, Dagle J, Lavoie PM, Simpson P, Dahmer M (2017) A functional ATG16L1 (T300A) variant is associated with necrotizing enterocolitis in premature infants. Pediatr Res 81(4):582–588

    Article  CAS  Google Scholar 

  • Shan L, Wu Q, Li Y, Shang H, Guo K, Wu J, Wei H, Zhao J, Yu J, Li MH (2014) Transcriptome profiling identifies differentially expressed genes in postnatal developing pituitary gland of miniature pig. DNA Res 21(2):207–216

    Article  CAS  Google Scholar 

  • Stroynowska-Czerwinska A, Fiszer A, Krzyzosiak WJ (2014) The panorama of miRNA-mediated mechanisms in mammalian cells. Cell Mol Life Sci 71(12):2253–2270

    Article  CAS  Google Scholar 

  • Sun G, Shi L, Yan S, Wan Z, Jiang N, Fu L, Li M, Guo J (2014) MiR-15b targets cyclin D1 to regulate proliferation and apoptosis in glioma cells. Biomed Res Int 2014:687826

    PubMed  PubMed Central  Google Scholar 

  • Swindle MM, Makin A, Herron AJ, Clubb FJ Jr, Frazier KS (2012) Swine as models in biomedical research and toxicology testing. Vet Pathol 49:344

    Article  CAS  Google Scholar 

  • Tian YG, Yue M, Gu Y, Gu WW, Wang YJ (2014) Single-nucleotide polymorphism analysis of GH,GHR, and IGF-1 genes in minipigs. Braz J Med Biol Res 47(9):753–758

    Article  CAS  Google Scholar 

  • Wang H, Yan X, Ji LY, Ji XT, Wang P, Guo SW, Li SZ (2017) vmiR-139 functions as an antioncomir to repress glioma progression through targeting IGF-1 R, AMY-1, and PGC-1β. Technol Cancer Res Treat 16(4):497–511

  • Wang YP, Li KB (2009) Correlation of expression profiles between microRNAs and mRNA targets using NCI-60 data. BMC Genomics 12(10):218

    Article  Google Scholar 

  • Wit JM, Walenkamp MJ (2013) Role of insulin-like growth factors in growth, development and feeding. World Rev Nutr Diet 106:60–65

    PubMed  Google Scholar 

  • Wu Y, Xiao Y, Ding X, Zhuo Y, Ren P, Zhou C, Zhou JA (2011) miR-200b/200c/429-binding site polymorphism in the 3′ untranslated region of the AP-2α gene is associated with cisplatin resistance. PLoS One 6(12):e29043

    Article  CAS  Google Scholar 

  • Xu Y, Li Q, Li XY, Yang QY, Xu WW, Liu GL (2012) Short-term anti-vascular endothelial growth factortreatment elicits vasculogenic mimicry formation of tumors to accelerate metastasis. J Exp Clin Cancer Res 23(31):16

    Article  Google Scholar 

  • Yakar S, Liu JL, Stannard B, Butler A, Accili D, Sauer B, LeRoith D (1999) Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc Natl Acad Sci U S A 96(13):7324–7329

    Article  CAS  Google Scholar 

  • Yi HJ, Guo W, Wu N, Li JN, Liu HZ, Ren LL, Liu PN, Yang SM (2014) The temporal bone microdissection of miniature pigs as useful large animal model for otologic research. Acta Otolaryngol 134(1):26–33

    Article  CAS  Google Scholar 

  • Yu M, Wang H, Xu Y, Yu D, Li D, Liu X, Du W (2015a) Insulin-like growth factor-1 (IGF-1) promotes myoblast proliferation and skeletal muscle growth of embryonic chickens via the PI3K/Akt signalling pathway. Cell Biol Int 39(8):910–922

    Article  CAS  Google Scholar 

  • Yu M, Wang H, Xu Y, Yu D, Li D, Liu X, Du W (2015b) Insulin-like growth factor-1 (IGF-1) promotes myoblast proliferation and skeletal muscle growth of embryonic chickens via the PI3K/Akt signalling pathway. Cell Biol Int 39(8):910–912

    Article  CAS  Google Scholar 

  • Zhang C, Shi YR, Liu XR, Cao YC, Zhen D, Jia ZY, Jiang JQ, Tian JH, Gao JM (2015) The anti-apoptotic role of Berberine in preimplantation embryo in vitro development through regulation of miRNA-21. PLoS One 10(6):e0129527

    Article  Google Scholar 

  • Zheng B, Liang L, Huang S, Zha R, Liu L, Jia D, Tian Q, Wang Q, Wang C, Long Z, Zhou Y, Cao X, Du C, Shi Y, He X (2012) MicroRNA-409 suppresses tumour cell invasion and metastasis by directly targeting radixin in gastric cancers. Oncogene 31(42):4509–4516

    Article  CAS  Google Scholar 

  • Zhou C, Lu Y, Li X (2015) miR-339-3p inhibits proliferation and metastasis of colorectal cancer. Oncol Lett 10(5):2842–2848

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31672514 and 31772699) and the Jilin Scientific and Technological Development Program (20170101024JC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Songcai Liu or Linlin Hao.

Ethics declarations

All of the protocols in this study were approved by the Ethics Committee on the Use and Care of Animals at Jilin University (Changchun, China) and were in compliance with the National Institute of Health Guide for the Care and Use of Laboratory Animals.

Conflict of interest

The authors declared that they have no conflicts of interest.

Additional information

Editor: Tetsuji Okamoto

Electronic supplementary material

Fig. S1

Healthy PK-15 cell morphology. Images obtained using a 10x eyepiece with 4x, 10x, 20x and 40x objective lenses (Figs. A, B, C and D, respectively) were taken 1 day after inoculation (PNG 368 kb)

High Resolution Image (TIF 791 kb)

Fig. S2

PCR product sequencing and NCBI database alignment analysis. (A) Sanger sequencing analysis of the 3′UTR product of IGF-1 amplified in PK-15 cells. (B) NCBI database alignment analysis of the results in (A) (PNG 800 kb)

High Resolution Image (TIF 6093 kb)

Fig. S3

Description of PK-15 cells (PNG 857 kb)

High Resolution Image (TIF 6825 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Wang, G., Cheng, Y. et al. A miR-511-binding site SNP in the 3′UTR of IGF-1 gene is associated with proliferation and apoptosis of PK-15 cells. In Vitro Cell.Dev.Biol.-Animal 55, 323–330 (2019). https://doi.org/10.1007/s11626-019-00329-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-019-00329-4

Keywords

Navigation