Advertisement

HSP90 inhibitor DPB induces autophagy and more effectively apoptosis in A549 cells combined with autophagy inhibitors

  • Zhao YanChun 
  • Kunlun Li
  • BaoXiang Zhao
  • Le SuEmail author
Article
  • 90 Downloads

Abstract

In our previous study, we proved that a novel Heat shock protein 90 (HSP90) inhibitor 4-(3-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl) benzoic acid (DPB) could inhibit A549 lung cancer cell growth via inducing apoptosis. However, whether DPB affects autophagy is still unknown. Here, we investigated the effects of DPB on autophagy and the improved anti-cancer activity in A549 lung cancer cells. Aggregation of LC3-II was observed using laser scanning confocal microscopy in GFP-LC3 stably transfected U87 cells. Autophagy and apoptosis-related protein levels were examined by Western blot analysis. It is suggested that treatment with DPB (5–20 μmol/L) induced mTOR-independent autophagy in dose- and time-dependent manners. Pre-treatment A549 cells with autophagy inhibitor 3-methyladenine (3-MA, 5 mmol/L) enhanced DPB-induced apoptosis. And, DPB inhibited A549 cell growth more effectively in combination with autophagy inhibitors 3-MA (5 mmol/L) or 3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3H)-one (3BDO, 30 μmol/L). These results illustrated that as a potential and promising HSP90 inhibitor, DPB could be utilized in the treatment of cancer combined with the autophagy inhibitor.

Keywords

HSP90 inhibitor DPB A549 Autophagy Apoptosis 

Notes

Funding information

This work was financially supported by the Natural Science Foundation of Shandong Province (grant number ZR2016CM01), Key R&D Program of Shandong Province (grant number 2018YYSP022 and 2017YYSP029), Spring Industry Leader Talent Support Plan (grant number 2017035), and Key Products Upgrading Plan for Gold Seed Enterprises (grant number 201711175).

References

  1. Bai S-Y, Dai X, Zhao B-X, Miao J-Y (2014) Discovery of a novel fluorescent HSP90 inhibitor and its anti-lung cancer effect. RSC Adv 4:19887–19890CrossRefGoogle Scholar
  2. Bai S-Y, Yao L-Q, Su L, Zhang S-L, Zhao B-X, Miao J-Y (2015) Low-dose HSP90 inhibitors DPB and AUY-922 repress apoptosis in HUVECs. RSC Adv 5:75753–75755CrossRefGoogle Scholar
  3. Cecconi F, Levine B (2008) The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell 15:344–357CrossRefGoogle Scholar
  4. Choi EJ, Cho BJ, Lee DJ, Hwang YH, Chun SH, Kim HH, Kim IA (2014) Enhanced cytotoxic effect of radiation and temozolomide in malignant glioma cells: targeting PI3K-AKT-mTOR signaling, HSP90 and histone deacetylases. BMC Cancer 14:17CrossRefGoogle Scholar
  5. Cohen-Saidon C, Carmi I, Keren A, Razin E (2006) Antiapoptotic function of Bcl-2 in mast cells is dependent on its association with heat shock protein 90beta. Blood 107:1413–1420CrossRefGoogle Scholar
  6. Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, Corominas-Faja B, Cuyas E, Lopez-Bonet E, Martin-Castillo B, Joven J, Menendez JA (2013) The anti-malarial chloroquine overcomes primary resistance and restores sensitivity to trastuzumab in HER2-positive breast cancer. Sci Rep 3:2469CrossRefGoogle Scholar
  7. Din FV, Valanciute A, Houde VP, Zibrova D, Green KA, Sakamoto K, Alessi DR, Dunlop MG (2012) Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology 142(1504–1515):e1503Google Scholar
  8. Ge D, Han L, Huang S, Peng N, Wang P, Jiang Z, Zhao J, Su L, Zhang S, Zhang Y, Kung H, Zhao B, Miao J (2014) Identification of a novel MTOR activator and discovery of a competing endogenous RNA regulating autophagy in vascular endothelial cells. Autophagy 10:957–971CrossRefGoogle Scholar
  9. Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221:3–12CrossRefGoogle Scholar
  10. Hardie DG (2008) AMPK and raptor: matching cell growth to energy supply. Mol Cell 30:263–265CrossRefGoogle Scholar
  11. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93CrossRefGoogle Scholar
  12. Hu B, Zhang Y, Jia L, Wu H, Fan C, Sun Y, Ye C, Liao M, Zhou J (2015) Binding of the pathogen receptor HSP90AA1 to avibirnavirus VP2 induces autophagy by inactivating the AKT-MTOR pathway. Autophagy 11:503–515CrossRefGoogle Scholar
  13. Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293CrossRefGoogle Scholar
  14. Liu G, Pei F, Yang F, Li L, Amin AD, Liu S, Buchan JR, Cho WC (2017) Role of autophagy and apoptosis in non-small-cell lung cancer. Int J Mol Sci 18Google Scholar
  15. Liu KS, Liu H, Qi JH, Liu QY, Liu Z, Xia M, Xing GW, Wang SX, Wang YF (2012) SNX-2112, an Hsp90 inhibitor, induces apoptosis and autophagy via degradation of Hsp90 client proteins in human melanoma A-375 cells. Cancer Lett 318:180–188CrossRefGoogle Scholar
  16. Marino G, Niso-Santano M, Baehrecke EH, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15:81–94CrossRefGoogle Scholar
  17. Mukhopadhyay S, Panda PK, Sinha N, Das DN, Bhutia SK (2014) Autophagy and apoptosis: where do they meet? Apoptosis Int J Program Cell Death 19:555–566CrossRefGoogle Scholar
  18. Nagelkerke A, Bussink J, Geurts-Moespot A, Sweep FC, Span PN (2015) Therapeutic targeting of autophagy in cancer. Part II: pharmacological modulation of treatment-induced autophagy. Semin Cancer Biol 31:99–105CrossRefGoogle Scholar
  19. Palacios C, Martin-Perez R, Lopez-Perez AI, Pandiella A, Lopez-Rivas A (2010) Autophagy inhibition sensitizes multiple myeloma cells to 17-dimethylaminoethylamino-17-demethoxygeldanamycin-induced apoptosis. Leuk Res 34:1533–1538CrossRefGoogle Scholar
  20. Qadir MA, Kwok B, Dragowska WH, To KH, Le D, Bally MB, Gorski SM (2008) Macroautophagy inhibition sensitizes tamoxifen-resistant breast cancer cells and enhances mitochondrial depolarization. Breast Cancer Res Treat 112:389–403CrossRefGoogle Scholar
  21. Rebecca VW, Massaro RR, Fedorenko IV, Sondak VK, Anderson AR, Kim E, Amaravadi RK, Maria-Engler SS, Messina JL, Gibney GT, Kudchadkar RR, Smalley KS (2014) Inhibition of autophagy enhances the effects of the AKT inhibitor MK-2206 when combined with paclitaxel and carboplatin in BRAF wild-type melanoma. Pigment Cell Melanoma Res 27:465–478CrossRefGoogle Scholar
  22. Schulte TW, Blagosklonny MV, Romanova L, Mushinski JF, Monia BP, Johnston JF, Nguyen P, Trepel J, Neckers LM (1996) Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf-1-MEK-mitogen-activated protein kinase signalling pathway. Mol Cell Biol 16:5839–5845CrossRefGoogle Scholar
  23. Seguin-Py S, Lucchi G, Croizier S, Chakrama FZ, Despouy G, Le Grand JN, Ducoroy P, Boireau W, Boyer-Guittaut M, Jouvenot M, Fraichard A, Delage-Mourroux R (2012) Identification of HSP90 as a new GABARAPL1 (GEC1)-interacting protein. Biochimie 94:748–758CrossRefGoogle Scholar
  24. Solit DB, Basso AD, Olshen AB, Scher HI, Rosen N (2003) Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol. Cancer Res 63:2139–2144Google Scholar
  25. Somanath PR, Razorenova OV, Chen J, Byzova TV (2006) Akt1 in endothelial cell and angiogenesis. Cell Cycle 5:512–518CrossRefGoogle Scholar
  26. Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, Han W, Lou F, Yang J, Zhang Q, Wang X, He C, Pan H (2013) Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis 4:e838CrossRefGoogle Scholar
  27. Tsuchihara K, Fujii S, Esumi H (2009) Autophagy and cancer: dynamism of the metabolism of tumor cells and tissues. Cancer Lett 278:130–138CrossRefGoogle Scholar
  28. Vazquez-Martin A, Oliveras-Ferraros C, Menendez JA (2009) Autophagy facilitates the development of breast cancer resistance to the anti-HER2 monoclonal antibody trastuzumab. PLoS One 4:e6251CrossRefGoogle Scholar
  29. Yang Z, Klionsky DJ (2010a) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814–822CrossRefGoogle Scholar
  30. Yang Z, Klionsky DJ (2010b) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22:124–131CrossRefGoogle Scholar
  31. Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J, Mi N, Zhao Y, Liu Z, Wan F, Hailey DW, Oorschot V, Klumperman J, Baehrecke EH, Lenardo MJ (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465:942–946CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Biobased Material and Green Papermaking, School of bioengineering, Shandong Academy of SciencesQilu University of TechnologyJinanChina
  2. 2.Jinan Hangchen Biotechnology Co., Ltd.JinanChina
  3. 3.Institute of Organic Chemistry, School of Chemistry and Chemical EngineeringShandong UniversityJinanChina

Personalised recommendations