Skip to main content
Log in

Monensin induces cell death by autophagy and inhibits matrix metalloproteinase 7 (MMP7) in UOK146 renal cell carcinoma cell line

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Monensin is a metal ionophore used as anticancer agent in many types of cancer cells. In this study, therapeutic potential of monensin was evaluated in TFE3 translocated renal cell carcinoma (RCC) cell line UOK146. UOK146 cells were treated with different concentrations of monensin, and cell death was induced as shown by MTT assay. Autophagy was studied by LC3 western, FACS and LC3 puncta formation after monensin treatment. Mitochondrial potential was studied by staining with TMRM and FACS. Antimetastatic potential of monensin was checked by inhibition of wound closure and MMP7 expression at RNA level. Dead and floating cells after the 10 μM monensin treatment were observed under phase contrast microscope. FACS analysis following TMRM staining showed that mitochondrial membrane gets depolarized after monensin treatment. FACS analysis after acridine orange staining showed increased double positive (green and red) cells, and LC3 upregulation and increased LC3 punta displayed autophagy activation in UOK146 cell line after monensin treatment. These findings showed that monensin acts as antiproliferative agent, activating autophagy and downregulates PRCC-TFE3 fusion transcript in Xp11.2 translocated tumor cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Ahluwalia P, Nair B, Kumar G (2013) Renal cell carcinoma associated with Xp11.2 translocation/TFE3 gene fusion: a rare case report with review of the literature. Case Rep Urol 2013:810590

    PubMed  PubMed Central  Google Scholar 

  • Antonescu CR, Le Loarer F, Mosquera JM, Sboner A, Zhang L, Chen CL, Chen HW, Pathan N, Krausz T, Dickson BC, Weinreb I, Rubin MA, Hameed M, Fletcher CD (2013) Novel YAP-TFE3 fusion defines a distinct subset of epithelioid hemangioendothelioma. Genes Chromosom Cancer 52(8):775–784

    Article  CAS  Google Scholar 

  • Argani P, Antonescu CR, Illei PB, Lui MY, Timmons CF, Newbury R, Reuter VE, Garvin AJ, Perez-Atayde AR, Fletcher JA, Beckwith JB, Bridge JA, Ladanyi M (2001) Primary renal neoplasms with the ASPL-TFE3 gene fusion of alveolar soft part sarcoma: a distinctive tumor entity previously included among renal cell carcinomas of children and adolescents. Am J Pathol 159(1):179–192

    Article  CAS  Google Scholar 

  • Argani P, Aulmann S, Illei PB, Netto GJ, Ro J, Cho HY, Dogan S, Ladanyi M, Martignoni G, Goldblum JR, Weiss SW (2010) A distinctive subset of PEComas harbors TFE3 gene fusions. Am J Surg Pathol 34(10):1395–1406

    Article  Google Scholar 

  • Bergmann L, Maute L, Guschmann M (2014) Temsirolimus for advanced renal cell carcinoma. Expert Rev Anticancer Ther 14:9–21

    Article  CAS  Google Scholar 

  • Choueiri TK, Lim ZD, Hirsch MS, Tamboli P, Jonasch E, McDermott DF, Dal Cin P, Corn P, Vaishampayan U, Heng DY, Tannir NM (2010) Vascular endothelial growth factor-targeted therapy for the treatment of adult metastatic Xp11.2translocation renal cell carcinoma. Cancer 116(22):5219–5225

    Article  CAS  Google Scholar 

  • Choureiri TK, Mosquera JM, Hirsch MS (2009) A case of adult metastatic Xp11 translocation rencal cell carcinoma treated successfully with sunitinib. Clin Genitourin Cancer 7:E93–E94

    Article  Google Scholar 

  • David JM, Owens TA, Barwe SP, Rajasekaran AK (2013) Gramicidin A induces metabolic dysfunction and energy depletion leading to cell death in renal cell carcinoma cells. Mol Cancer Ther 12(11):2296–2307

    Article  CAS  Google Scholar 

  • David JM, Owens TA, Inge LJ, Bremner RM, Rajasekaran AK (2014) Gramicidin a blocks tumor growth and angiogenesis through inhibition of hypoxia-induciblefactor in renal cell carcinoma. Mol Cancer Ther 13(4):788–799

    Article  CAS  Google Scholar 

  • Ding WQ, Lind SE (2009) Metal ionophores—an emerging class of anticancer drugs. IUBMB Life 61(11):1013–1018

    Article  CAS  Google Scholar 

  • Ketola K, Vainio P, Fey V, Kallioniemi O, Iljin K (2010) Monensin is a potent inducer of oxidative stress and inhibitor of androgen signaling leading to apoptosis in prostate cancer cells. Mol Cancer Ther 9(12):3175–3185

    Article  CAS  Google Scholar 

  • Kobos R, Nagai M, Tsuda M, Merl MY, Saito T, Laé M, Mo Q, Olshen A, Lianoglou S, Leslie C, Ostrovnaya I, Antczak C, Djaballah H, Ladanyi M (2013) Combining integrated genomics and functional genomics to dissect the biology of a cancer-associated, aberrant transcription factor, the ASPSCR1-TFE3 fusion oncoprotein. J Pathol 229(5):743–754

    Article  CAS  Google Scholar 

  • Kollmannsberger C, Soulieres D, Wong R, Scalera A, Gaspo R, Bjarnason G (2007) Sunitinib therapy for metastatic renal cell carcinoma: recommendations for management of side effects. Can Urol Assoc J 1:S41–S54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Singh PK, Parihar R, Dwivedi V, Lakhotia SC, Ganesh S (2014) Decreased O-linked GlcNAcylation protects from cytotoxicity mediated by huntingtin exon1protein fragment. J Biol Chem 289(19):13543–13553

    Article  CAS  Google Scholar 

  • Lindblad P (2004) Epidemiology of renal cell carcinoma. Scand J Surg 93:88–96

    Article  CAS  Google Scholar 

  • Macher-Goeppinger S, Roth W, Wagener N, Hohenfellner M, Penzel R, Haferkamp A, Schirmacher P, Aulmann S (2012) Molecular heterogeneity of TFE3 activation in renal cell carcinomas. Mod Pathol 25:308–315

    Article  CAS  Google Scholar 

  • Malouf GG, Camparo P, Oudard S, Schleiermacher G, Theodore C, Rustine A, Dutcher J, Billemont B, Rixe O, Bompas E, Guillot A, Boccon-Gibod L, Couturier J, Molinié V, Escudier B (2010) Targeted agents in metastatic Xp11 translocation/TFE3 gene fusion renal cell carcinoma (RCC): a report from the juvenile RCC network. Ann Oncol 21(9):1834–1838

    Article  CAS  Google Scholar 

  • Mathur M, Das S, Samuels HH (2003) PSF-TFE3 oncoprotein in papillary renal cell carcinoma inactivates TFE3 and p53 through cytoplasmic sequestration. Oncogene 7:5031–5044

    Article  Google Scholar 

  • Mir MC, Trilla E, de Torres IM, Panizo A, Zlotta AR, Van Rhijn B, Morote J (2011) Altered transcription factor E3 expression in unclassified adult renal cell carcinoma indicates adverse pathological features and poor outcome. BJU Int 108(2 Pt 2):E71–E76

    Article  Google Scholar 

  • Mollenhauer HH, Morré DJ, Rowe LD (1990) Alteration of intracellular traffic by monensin; mechanism, specificity and relationship to toxicity. Biochim Biophys Acta 1031(2):225–246

    Article  CAS  Google Scholar 

  • Parikh J, Coleman T, Messias N, Brown J (2009) Temsirolimus in the treatment of renal cell carcinoma associated with Xp11.2 translocation/TFE gene fusion proteins:a case report and review of literature. Rare Tumors e53:1

    Google Scholar 

  • Park WH, Jung CW, Park JO, Kim K, Kim WS, Im YH, Lee MH, Kang WK, Park K (2003a) Monensin inhibits the growth of renal cell carcinoma cells via cell cycle arrest or apoptosis. Int J Oncol 22(4):855–860

  • Park WH, Kim ES, Kim BK, Lee YY (2003b) Monensin-mediated growth inhibition in NCI-H929 myeloma cells via cell cycle arrest and apoptosis. Int J Oncol 23(1):197–204

  • Park WH, Lee MS, Park K, Kim ES, Kim BK, Lee YY (2002a) Monensin-mediated growth inhibition in acute myelogenous leukemia cells via cell cycle arrest and apoptosis. Int J Cancer 101(3):235–242

    Article  CAS  Google Scholar 

  • Park WH, Seol JG, Kim ES, Kang WK, Im YH, Jung CW, Kim BK, Lee YY (2002b) Monensin-mediated growth inhibition in human lymphoma cells through cell cycle arrest and apoptosis. Br J Haematol 119(2):400–407

    Article  CAS  Google Scholar 

  • Rais-Bahrami S, Drabick JJ, De Marzo AM, Hicks J, Ho C, Caroe AE (2007) Xp11 translocation renal cell carcinoma: delayed but massive and lethal metastases o a chemotherapy-associated secondary malignancy. Urology 70(1):178.e3–178.e6

    Article  Google Scholar 

  • Roth JA, Ames RS, Fry K, Lee HM, Scannon PJ (1988) Mediation of reduction of spontaneous and experimental pulmonary metastases by ricin A-chainimmunotoxin 45-2D9-RTA with potentiation by systemic monensin in mice. Cancer Res 48(12):3496–3501

    CAS  PubMed  Google Scholar 

  • Sarkissian G, Fergelot P, Lamy PJ, Patard JJ, Culine S, Jouin P, Rioux-Leclercq N, Darbouret B (2008) Identification of pro-MMP-7 as a serum marker for renal cell carcinoma by use of proteomic analysis. Clin Chem 54:574–581

    Article  CAS  Google Scholar 

  • Souza AC, Machado FS, Celes MR, Faria G, Rocha LB, Silva JS, Rossi MA (2005) Mitochondrial damage as an early event of monensin-induced cell injury in culture fibroblasts L929. J Vet Med A Physiol Pathol Clin Med 52:230–237

    Article  CAS  Google Scholar 

  • Tanaka M, Kato K, Gomi K, Matsumoto M, Kudo H, Shinkai M, Ohama Y, Kigasawa H, Tanaka Y (2009) Perivascular epithelioid cell tumor with SFPQ/PSF-TFE3 gene fusion in a patient with advanced neuroblastoma. Am J Surg Pathol 33(9):1416–1420

    Article  Google Scholar 

  • Taniguchi M, Nadanaka S, Tanakura S, Sawaguchi S, Midori S, Kawai Y (2015) TFE3 is a bHLH-ZIP-type transcription factor that regulates the mammalian Golgi stress response. Cell Struct Funct 40:13–30

    Article  Google Scholar 

  • Taniguchi M, Sasaki-Osugi K, Oku M, Sawaguchi S, Tanakura S, Kawai Y, Wakabayashi S, Yoshida H (2016) MLX is a transcriptional repressor of the mammalian Golgi stress response. Cell Struct Funct 41:93–104

    Article  Google Scholar 

  • Tsuda M, Davis IJ, Argani P, Shukla N, McGill GG, Nagai M, Saito T, Laé M, Fisher DE, Ladanyi M (2007) TFE3 fusions activate MET signaling by transcriptional up-regulation, defining another class of tumors as candidates for therapeutic MET inhibition. Cancer Res 67(3):919–929

    Article  CAS  Google Scholar 

  • Tumova L, Pombinho AR, Vojtechova M, Stancikova J, Gradl D, Krausova M, Sloncova E, Horazna M, Kriz V, Machonova O, Jindrich J, Zdrahal Z, Bartunek P, Korinek V (2014) Monensin inhibits canonical Wnt signaling in human colorectal cancer cells and suppresses tumor growth in multiple intestinal neoplasia mice. Mol Cancer Ther 13(4):812–822

    Article  CAS  Google Scholar 

  • Vainionpää N, Lehto VP, Tryggvason K, Virtanen I (2007) Alpha4 chain laminins are widely expressed in renal cell carcinomas and have a de-adhesivefunction. Lab Investig 87(8):780–791

    Article  Google Scholar 

  • Verma SP, Tripathi VC, Das P (2014) Asparagus racemosus leaf extract inhibits growth of UOK 146 renal cell carcinoma cell line: simultaneous oncogenic PRCCTFE3 fusion transcript inhibition and apoptosis independent cell death. Asian Pac J Cancer Prev 15:1937–1941

    Article  Google Scholar 

  • Yang ZJ, Chee CE, Huang S, Sinicrope FA (2011) The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 10(9):1533–1541

    Article  CAS  Google Scholar 

  • Yoon MJ, Kang YJ, Kim IY, Kim EH, Lee JA, Lim JH, Kwon TK, Choi KS (2013) Monensin,a polyether ionophore antibiotic, overcomes TRAIL resistance in glioma cells viaendoplasmic reticulum stress, DR5 upregulation and c-FLIP downregulation. Carcinogenesis 34(8):1918–1928

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge W M Linehan, National Cancer Institute, USA for providing the UOK 146 cell line; Interdisciplinary School of Life Sciences, Banaras Hindu University, Varanasi, for flow cytometry and real time PCR facilities; and Prof. Ashok Mukhopadhyay, National Institute of Immunology, New Delhi for COS-7 cell line. We are also very much thankful to Prof. S Ganesh, IIT Kanpur, for mRFP-GFP-LC3B expression vector; Prof. Prasenjit Guchhait, Regional Centre for Biotechnology, Faridabad, India, for Anti-LC3 antibody; and Indian Council of Medical Research (ICMR), Government of India, New Delhi, for fellowship support of JRF & SRF to Shiv Prakash Verma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parimal Das.

Ethics declarations

Competing financial interests

The authors declare no competing financial interests.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editor: Tetsuji Okamoto

Appendix

Appendix

Table 1. List of primers used in the study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S.P., Das, P. Monensin induces cell death by autophagy and inhibits matrix metalloproteinase 7 (MMP7) in UOK146 renal cell carcinoma cell line. In Vitro Cell.Dev.Biol.-Animal 54, 736–742 (2018). https://doi.org/10.1007/s11626-018-0298-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-018-0298-7

Keywords

Navigation