Skip to main content
Log in

Antler extracts stimulate chondrocyte proliferation and possess potent anti-oxidative, anti-inflammatory, and immune-modulatory properties

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The Sika deer antler is well known for its unique ability to regenerate repeatedly and grow rapidly. Furthermore, it is a precious traditional Chinese medicine and has been widely used for more than 20 centuries. The major bioactive components within the antlers are water-soluble proteins, polypeptides, and free amino acids. Many studies have shown that water-soluble antler extracts play pivotal roles in wound healing, immune system modulation, anti-oxidation, and anti-inflammation. However, the exact effects on chondrocytes are still largely unknown. In this study, we prepared fresh, aqueous extracts from growing deer antlers in a rapid growth stage. We isolated the chondrocytes from neonatal mouse rib cartilage and investigated the effects of antler extracts on chondrocyte viability. We also used the RNA-Seq method to analyze the gene expression pattern under antler extract treatment. We demonstrated that fresh extracts from Sika deer antlers in a rapid growth stage significantly promoted chondrocyte viability and kept chondrocytes proliferating continuously, while blocking maturation and further differentiation. Additionally, our results indicated that antler extracts might serve as a potent anti-oxidant, anti-inflammatory agent, and immune modulator to boost the abilities of chondrocytes against oxidative, inflammatory, and immune stresses. Thus, this study has greatly deepened our current knowledge of the molecular control of antler extracts on chondrocytes. It has also shed light on possible new strategies to further prevent and treat diseases of cartilage and other related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barling PM, Lai AK, Nicholson LF (2005) Distribution of EGF and its receptor in growing red deer antler. Cell Biol Int 29:229–236

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Yang Y, Abbasi S, Hajinezhad D, Kontulainen S, Honaramooz A (2015) The effects of elk velvet antler dietary supplementation on physical growth and bone development in growing rats. Evid Based Complement Alternat Med 2015:819520, 1, 10

  • Church V, Nohno T, Linker C, Marcelle C, Francis-West P (2002) Wnt regulation of chondrocyte differentiation. J Cell Sci 115:4809–4818

    Article  PubMed  CAS  Google Scholar 

  • Clark DE, Lord EA, Suttie JM (2006) Expression of VEGF and pleiotrophin in deer antler. Anat Rec A Discov Mol Cell Evol Biol 288:1281–1293

    Article  PubMed  CAS  Google Scholar 

  • Dunkelberger JR, Song WC (2010) Complement and its role in innate and adaptive immune responses. Cell Res 20:34–50

    Article  PubMed  CAS  Google Scholar 

  • Enomoto-Iwamoto M, Kitagaki J, Koyama E, Tamamura Y, Wu C, Kanatani N, Koike T, Okada H, Komori T, Yoneda T, Church V, Francis-West PH, Kurisu K, Nohno T, Pacifici M, Iwamoto M (2002) The Wnt antagonist Frzb-1 regulates chondrocyte maturation and long bone development during limb skeletogenesis. Dev Biol 251:142–156

    Article  PubMed  CAS  Google Scholar 

  • Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15:1583–1606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garrett-Sinha LA (2013) Review of Ets1 structure, function, and roles in immunity. Cell Mol Life Sci 70:3375–3390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaur T, Rich L, Lengner CJ, Hussain S, Trevant B, Ayers D, Stein JL, Bodine PV, Komm BS, Stein GS, Lian JB (2006) Secreted frizzled related protein 1 regulates Wnt signaling for BMP2 induced chondrocyte differentiation. J Cell Physiol 208:87–96

    Article  PubMed  CAS  Google Scholar 

  • Goldring MB (2012) Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Ther Adv Musculoskelet Dis 4:269–285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Görlach A, Bonello S (2008) The cross-talk between NF-kappaB and HIF-1: further evidence for a significant liaison. Biochem J 412:e17–e19

    Article  PubMed  Google Scholar 

  • Gosset M, Berenbaum F, Thirion S, Jacques C (2008) Primary culture and phenotyping of murine chondrocytes. Nat Protoc 3:1253–1260

    Article  PubMed  CAS  Google Scholar 

  • Guan SW, Duan LX, Li YY, Wang BX, Zhou QL (2006) A novel polypeptide from Cervus nippon Temminck proliferation of epidermal cells and NIH3T3 cell line. Acta Biochim Pol 53:395–397

    PubMed  CAS  Google Scholar 

  • Hessle L, Stordalen GA, Wenglén C, Petzold C, Tanner E, Brorson SH, Baekkevold ES, Önnerfjord P, Reinholt FP, Heinegård D (2013) The skeletal phenotype of chondroadherin deficient mice. PLoS One 8:e63080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hojyo S, Fukada T, Shimoda S, Ohashi W, Bin BH, Koseki H, Hirano T (2011) The zinc transporter SLC39A14/ZIP14 controls G-protein coupled receptor-mediated signaling required for systemic growth. PLoS One 6:e18059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang X, Birk DE, Goetinck PF (1999) Mice lacking matrilin-1 (cartilage matrix protein) have alterations in type II collagen fibrillogenesis and fibril organization. Dev Dyn 216:434–441

    Article  PubMed  CAS  Google Scholar 

  • Humbert PO, Verona R, Trimarchi JM, Rogers C, Dandapani S, Lees JA (2000) E2f3 is critical for normal cellular proliferation. Genes Dev 14:690–703

    PubMed  PubMed Central  CAS  Google Scholar 

  • Janune D, Kubota S, Nishida T, Kawaki H, Perbal B, Iida S, Takigawa M (2011) Novel effects of CCN3 that may direct the differentiation of chondrocytes. FEBS Lett 585:3033–3040

    Article  PubMed  CAS  Google Scholar 

  • Jares P, Donaldson A, Blow JJ (2000) The Cdc7/Dbf4 protein kinase: target of the S phase checkpoint? EMBO Rep 1:319–322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jay GD, Waller KA (2014) The biology of lubricin: near frictionless joint motion. Matrix Biol 39:17–24

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim SJ, Jung HJ, Hyun DH, Park EH, Kim YM, Lim CJ (2010) Glutathione reductase plays an anti-apoptotic role against oxidative stress in human hepatoma cells. Biochimie 92:927–932

    Article  PubMed  CAS  Google Scholar 

  • Klinger P, Surmann-Schmitt C, Brem M, Swoboda B, Distler JH, Carl HD, von der Mark K, Hennig FF, Gelse K (2011) Chondromodulin 1 stabilizes the chondrocyte phenotype and inhibits endochondral ossification of porcine cartilage repair tissue. Arthritis Rheum 63:2721–2231

    Article  PubMed  CAS  Google Scholar 

  • Knapp S, de Vos AF, Florquin S, Golenbock DT, van der Poll T (2003) Lipopolysaccharide binding protein is an essential component of the innate immune response to Escherichia coli peritonitis in mice. Infect Immun 71:6747–6753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lai AK, Hou WL, Verdon DJ, Nicholson LF, Barling PM (2007) The distribution of the growth factors FGF-2 and VEGF, and their receptors, in growing red deer antler. Tissue Cell 39:35–46

    Article  PubMed  CAS  Google Scholar 

  • Lai RK, Xu IM, Chiu DK, Tse AP, Wei LL, Law CT, Lee D, Wong CM, Wong MP, Ng IO, Wong CC (2016) NDUFA4L2 fine-tunes oxidative stress in hepatocellular carcinoma. Clin Cancer Res 22:3105–3117

    Article  PubMed  CAS  Google Scholar 

  • Lee HS, Kim MK, Kim YK, Jung EY, Park CS, Woo MJ, Lee SH, Kim JS, Suh HJ (2011) Stimulation of osteoblastic differentiation and mineralization in MC3T3-E1 cells by antler and fermented antler using Cordyceps militaris. J Ethnopharmacol 13:710–717

    Article  Google Scholar 

  • Manzoni C, Kia DA, Vandrovcova J, Hardy J, Wood NW, Lewis PA, Ferrari R (2016) Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief Bioinform pii:bbw114

  • Martos-Rodríguez A, Santos-Alvarez I, Campo-Ruíz V, González S, García-Ruiz JP, Delgado-Baeza E (2003) Expression of CCAAT/enhancer-binding protein-beta (C/EBPbeta) and CHOP in the murine growth plate. Two possible key modulators of chondrocyte differentiation. J Bone Joint Surg Br 85:1190–1195

    Article  PubMed  Google Scholar 

  • Masat E, Gasparini C, Agostinis C, Bossi F, Radillo O, De Seta F, Tamassia N, Cassatella MA, Bulla R (2015) RelB activation in anti-inflammatory decidual endothelial cells: a master plan to avoid pregnancy failure? Sci Rep 5:14847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mikler JR, Theoret CL, High JC (2004) Effects of topical elk velvet antler on cutaneous wound healing in streptozotocin-induced diabetic rats. J Altern Complement Med 10:835–840

    Article  PubMed  Google Scholar 

  • Moon MH, Jeong JK, Lee YJ, Seol JW, Park SY (2012) Sphingosine-1-phosphate inhibits interleukin-1β-induced inflammation in human articular chondrocytes. Int J Mol Med 30:1451–1458

    Article  PubMed  CAS  Google Scholar 

  • Nakav S, Chaimovitz C, Sufaro Y, Lewis EC, Shaked G, Czeiger D, Zlotnik M, Douvdevani A (2008) Anti-inflammatory preconditioning by agonists of adenosine A1 receptor. PLoS One 3:e2107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nicassio F, Corrado N, Vissers JH, Areces LB, Bergink S, Marteijn JA, Geverts B, Houtsmuller AB, Vermeulen W, Di Fiore PP, Citterio E (2007) Human USP3 is a chromatin modifier required for S phase progression and genome stability. Curr Biol 17:1972–1977

    Article  PubMed  CAS  Google Scholar 

  • Pita-Thomas W, Nieto-Sampedro M, Maza RM, Nieto-Diaz M (2010) Factors promoting neurite outgrowth during deer antler regeneration. J Neurosci Res 88:3034–3047

    Article  PubMed  CAS  Google Scholar 

  • Price J, Allen S (2004) Exploring the mechanisms regulating regeneration of deer antlers. Philos Trans R Soc Lond Ser B Biol Sci 359:809–822

    Article  CAS  Google Scholar 

  • Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zitka O, Masarik M, Eckschlager T, Stiborova M, Adam V, Kizek R (2013) The role of metallothionein in oxidative stress. Int J Mol Sci 14:6044–6066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmandt R, Hill M, Amendola A, Mills GB, Hogg D (1994) IL-2-induced expression of TTK, a serine, threonine, tyrosine kinase, correlates with cell cycle progression. J Immunol 152:96–105

    PubMed  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C (T) method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Shu B, Zhang M, Xie R, Wang M, Jin H, Hou W, Tang D, Harris SE, Mishina Y, O'Keefe RJ, Hilton MJ, Wang Y, Chen D (2011) BMP2, but not BMP4, is crucial for chondrocyte proliferation and maturation during endochondral bone development. J Cell Sci 124:3428–3440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siegel D, Gustafson DL, Dehn DL, Han JY, Boonchoong P, Berliner LJ, Ross D (2004) NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger. Mol Pharmacol 65:1238–1247

    Article  PubMed  CAS  Google Scholar 

  • Sloan CL, Sloan GJ, Cannon JG (2006) Anti-inflammatory influence of P-selectin on human mononuclear cells. Vasc Pharmacol 44:166–169

    Article  CAS  Google Scholar 

  • Spalinger MR, McCole DF, Rogler G, Scharl M (2016) Protein tyrosine phosphatase non-receptor type 2 and inflammatory bowel disease. World J Gastroenterol 22:1034–1044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sui Z, Zhang L, Huo Y, Zhang Y (2014) Bioactive components of velvet antlers and their pharmacological properties. J Pharm Biomed Anal 87:229–240

    Article  PubMed  CAS  Google Scholar 

  • Sun YN, Liu JL, Ma SH, Yang WF, Bai DJ, Wang Y (2017) Pilose antler extracts protect against imiquimod-induced psoriasis-like inflammation. Int J Clin Exp Pathol 10:3617–3625

    CAS  Google Scholar 

  • Tang W, Wang H, Claudio E, Tassi I, Ha HL, Saret S, Siebenlist U (2014) The oncoprotein and transcriptional regulator Bcl-3 governs plasticity and pathogenicity of autoimmune T cells. Immunity 41:555–566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thorp BH, Anderson I, Jakowlew SB (1992) Transforming growth factor-beta 1, -beta 2 and -beta 3 in cartilage and bone cells during endochondral ossification in the chick. Development 114:907–911

    PubMed  CAS  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Voets E, Wolthuis RM (2010) MASTL is the human orthologue of Greatwall kinase that facilitates mitotic entry, anaphase and cytokinesis. Cell Cycle 9:3591–3601

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Li L, Xu S, Mao M, Pan R, Li Y, Wu J, Huang L, Zheng X (2017) Evaluation of velvet antler total protein effect on bone marrow-derived endothelial progenitor cells. Mol Med Rep 16:3161–3168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao X, Xu S, Li L, Mao M, Wang J, Li Y, Wang Z, Ye F, Huang L (2017b) The effect of velvet antler proteins on cardiac microvascular endothelial cells challenged with ischemia-hypoxia. Front Pharmacol 8:601

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Topol L, Lee H, Wu J (2003) Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development 130:1003–1015

    Article  PubMed  CAS  Google Scholar 

  • Yao B, Zhao Y, Wang Q, Zhang M, Liu M, Liu H, Li J (2012a) De novo characterization of the antler tip of Chinese sika deer transcriptome and analysis of gene expression related to rapid growth. Mol Cell Biochem 364:93–100

    Article  PubMed  CAS  Google Scholar 

  • Yao B, Zhao Y, Zhang H, Zhang M, Liu M, Liu H, Li J (2012b) Sequencing and de novo analysis of the Chinese sika deer antler-tip transcriptome during the ossification stage using Illumina RNA-Seq technology. Biotechnol Lett 34:813–822

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Ji BP, Li B, Zhou F, Li JH, Luo YC (2009) Immunomodulatory effects of aqueous extract of velvet antler (Cervus elaphus linnaeus) and its simulated gastrointestinal digests on immune cells in vitro. J Food Drug Anal 17:282–292

    Google Scholar 

  • Zhao L, Pei RS, Ji BP, Luo YC, Zhang D, Xu ZY, Jia XN (2010) Antioxidant activity of aqueous extract fractions of velvet antler (Cervus elaphus Linnaeus). J Food Drug Anal 18:319–327

    CAS  Google Scholar 

  • Zhou QL, Guo YJ, Wang LJ, Wang Y, Liu YQ, Wang Y, Wang BX (1999) Velvet antler polypeptides promoted proliferation of chondrocytes and osteoblast precursors and fracture healing. Zhongguo Yao Li Xue Bao 20:279–282

    PubMed  CAS  Google Scholar 

  • Zingarelli B, Piraino G, Hake PW, O'Connor M, Denenberg A, Fan H, Cook JA (2010) Peroxisome proliferator-activated receptor {delta} regulates inflammation via NF-{kappa}B signaling in polymicrobial sepsis. Am J Pathol 177:1834–1847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported through grants from the Science and Technology Development Project of Jilin Province (grant number 20170520044JH), the Science and Technology Project of Jilin Provincial Education Department (grant number JJKH20170721KJ), the National Natural Science Foundation of China (grant number 81702136), and the National Chinese Medicine Standardization Project (Grant numbers ZYBZH-Y-JL-26 and ZYBZH-C-JL-22).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daqing Zhao or Yu Zhao.

Ethics declarations

Disclosure statement

All authors declare that they have no competing interests.

Additional information

Editor: Tetsuji Okamoto

Electronic supplementary material

Fig. S1

Visualization and quantification of DAE protein. a Coomassie blue staining of DAE. DAE proteins were separated by a 12% SDS-PAGE and then stained by Coomassie brilliant blue R-250 dye with a set of molecular weight standards. A standard curve was created by plotting the absorbance at 595 nm against a series of bovine serum albumin (BSA) standards in the 0 to 500 μg/ml range. A trend line based on the collected data was given at y = 0.0018x − 0.0048 with a R2 = 0.996 correlation. The protein concentration of DAE was determined according to the standard curve. (GIF 5 kb)

High Resolution Image

(TIF 174 kb)

Fig. S2

Gene expression levels of differentially expressed gene validated by qRT-PCR. Data are presented as the mean with standard deviation for technical triplicates in an experiment representative of several independent ones. *p < 0.05 and **p < 0.001 in a t test for the difference in gene expression level. The gene expression level is presented as the fold change compared to untreated group separately. (GIF 11 kb)

High Resolution Image

(TIF 75 kb)

Table S1

(DOC 50 kb)

Table S2

(DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, B., Zhang, M., Leng, X. et al. Antler extracts stimulate chondrocyte proliferation and possess potent anti-oxidative, anti-inflammatory, and immune-modulatory properties. In Vitro Cell.Dev.Biol.-Animal 54, 439–448 (2018). https://doi.org/10.1007/s11626-018-0266-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-018-0266-2

Keywords

Navigation