Over-expression of CNTF in bone marrow mesenchymal stem cells protects RPE cells from short-wavelength, blue-light injury

  • Wen Lin
  • Guoxing Xu


Increasing evidence has demonstrated that excessive blue-light (BL) with high photochemical energy and phototoxicity could induce apoptosis in retinal pigment epithelium (RPE) cells. RPE apoptosis leads to retina damage and further aggravate age-related macular degeneration (ARMD). Because of their neuroprotective, plasticity, and immunomodulatory ability, bone marrow mesenchymal stem cells (BMSCs) are recognized for retinal neuroprotection. RPE cells possess ciliary neurotrophic factor (CNTF) receptor complexes and can respond to CNTF; hence, we investigated the effects of BMSCs over-expressing CNTF on BL-injured RPE cells. BL-injured RPE cells were co-cultured with CNTF-BMSCs and GFP-BMSCs for 24 and 48 h. Superoxide dismutase and malondialdehyde assays were conducted to examine the effects of CNTF-BMSCs on the oxidative stress of RPE cells. VEGF protein secretion by RPE was determined by ELISA, and western blotting analysis was used to determine apoptotic protein expression and autophagic flux. Immunofluorescence was used to demonstrate the relationship between autophagy and apoptosis. We found that CNTF-BMSCs enhanced antioxidant capacity, decreased VEGF secretion, promoted autophagic flux, and inhibited apoptosis in BL-injured RPE cells, compared to GFP-BMSCs. Our findings suggest that CNTF over-expression enhances the protective effects of BMSCs on RPE cells, thus indicating subretinal-transplantation of CNTF-BMSCs may be a promising therapy for BL-injured retina.


Blue-light (BL) Retinal pigment epithelium (RPE) Bone marrow mesenchymal stem cells (BMSCs) Ciliary neurotrophic factor (CNTF) 



The authors would like to thank Fei Huang, Zeng Wang, Ruiqing Chen, and Bing Wu for their technical assistance.


This study was supported by the Chinese Nature Science Foundation (grant no. 81770948).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11626_2018_243_MOESM1_ESM.xlsx (27 kb)
ESM 1 (XLSX 26 kb)


  1. Adijanto J, Banzon T, Jalickee S, Wang NS, Miller SS (2009) CO2-induced ion and fluid transport in human retinal pigment epithelium. J Gen Physiol 133(6):603–622CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arnault E, Barrau C, Nanteau C, Gondouin P, Bigot K, Vienot F, Gutman E, Fontaine V, Villette T, Cohen-Tannoudji D, Sahel JA, Picaud S (2013) Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions. PLoS One 8(8):e71398CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arnhold S, Heiduschka P, Klein H, Absenger Y, Basnaoglu S, Kreppel F, Henke-Fahle S, Kochanek S, Bartz-Schmidt KU, Addicks K, Schraermeyer U (2006) Adenovirally transduced bone marrow stromal cells differentiate into pigment epithelial cells and induce rescue effects in RCS rats. Invest Ophthalmol Vis Sci 47(9):4121–4129CrossRefPubMedGoogle Scholar
  4. Behar-Cohen F, Martinsons C, Vienot F, Zissis G, Barlier-Salsi A, Cesarini JP, Enouf O, Garcia M, Picaud S, Attia D (2011) Light-emitting diodes (LED) for domestic lighting: any risks for the eye? Prog Retin Eye Res 30(4):239–257CrossRefPubMedGoogle Scholar
  5. Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295(5557):1070–1073CrossRefPubMedGoogle Scholar
  6. Boyle KB, Randow F (2013) The role of ‘eat-me’ signals and autophagy cargo receptors in innate immunity. Curr Opin Microbiol 16(3):339–348CrossRefPubMedGoogle Scholar
  7. Braunstein RE, Sparrow JR (2005) A blue-blocking intraocular lens should be used in cataract surgery. Arch Ophthalmol 123(4):547–549CrossRefPubMedGoogle Scholar
  8. Chen PM, Yen ML, Liu KJ, Sytwu HK, Yen BL (2011) Immunomodulatory properties of human adult and fetal multipotent mesenchymal stem cells. J Biomed Sci 18:49CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen Y, Sawada O, Kohno H, Le YZ, Subauste C, Maeda T, Maeda A (2013) Autophagy protects the retina from light-induced degeneration. J Biol Chem 288(11):7506–7518CrossRefPubMedPubMedCentralGoogle Scholar
  10. Contin MA, Benedetto MM, Quinteros-Quintana ML, Guido ME (2016) Light pollution: the possible consequences of excessive illumination on retina. Eye (Lond) 30(2):255–263CrossRefGoogle Scholar
  11. Delori FC, Goger DG, Dorey CK (2001) Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects. Invest Ophthalmol Vis Sci 42(8):1855–1866PubMedGoogle Scholar
  12. Fleming A, Noda T, Yoshimori T, Rubinsztein DC (2011) Chemical modulators of autophagy as biological probes and potential therapeutics. Nat Chem Biol 7(1):9–17CrossRefPubMedGoogle Scholar
  13. Flores-Bellver M, Bonet-Ponce L, Barcia JM, Garcia-Verdugo JM, Martinez-Gil N, Saez-Atienzar S, Sancho-Pelluz J, Jordan J, Galindo MF, Romero FJ (2014) Autophagy and mitochondrial alterations in human retinal pigment epithelial cells induced by ethanol: implications of 4-hydroxy-nonenal. Cell Death Dis 5:e1328CrossRefPubMedPubMedCentralGoogle Scholar
  14. Grimm C, Wenzel A, Williams T, Rol P, Hafezi F, Reme C (2001) Rhodopsin-mediated blue-light damage to the rat retina: effect of photoreversal of bleaching. Invest Ophthalmol Vis Sci 42(2):497–505PubMedGoogle Scholar
  15. Hadziahmetovic M, Kumar U, Song Y, Grieco S, Song D, Li Y, Tobias JW, Dunaief JL (2012) Microarray analysis of murine retinal light damage reveals changes in iron regulatory, complement, and antioxidant genes in the neurosensory retina and isolated RPE. Invest Ophthalmol Vis Sci 53(9):5231–5241CrossRefPubMedPubMedCentralGoogle Scholar
  16. Huang L, Xu G, Guo J, Xie M, Chen L, Xu W (2016) Mesenchymal stem cells modulate light-induced activation of retinal microglia through CX3CL1/CX3CR1 signaling. Ocul Immunol Inflamm 24(6):684–692CrossRefPubMedGoogle Scholar
  17. Huang L, Xu W, Xu G (2013) Transplantation of CX3CL1-expressing mesenchymal stem cells provides neuroprotective and immunomodulatory effects in a rat model of retinal degeneration. Ocul Immunol Inflamm 21(4):276–285CrossRefPubMedGoogle Scholar
  18. Hunter JJ, Morgan JI, Merigan WH, Sliney DH, Sparrow JR, Williams DR (2012) The susceptibility of the retina to photochemical damage from visible light. Prog Retin Eye Res 31(1):28–42CrossRefPubMedGoogle Scholar
  19. Inoue Y, Iriyama A, Ueno S, Takahashi H, Kondo M, Tamaki Y, Araie M, Yanagi Y (2007) Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration. Exp Eye Res 85(2):234–241CrossRefPubMedGoogle Scholar
  20. Jarrett SG, Boulton ME (2012) Consequences of oxidative stress in age-related macular degeneration. Mol Asp Med 33(4):399–417CrossRefGoogle Scholar
  21. Jin M, Li S, Moghrabi WN, Sun H, Travis GH (2005) Rpe 65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell 122(3):449–459CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kaarniranta K, Sinha D, Blasiak J, Kauppinen A, Vereb Z, Salminen A, Boulton ME, Petrovski G (2013) Autophagy and heterophagy dysregulation leads to retinal pigment epithelium dysfunction and development of age-related macular degeneration. Autophagy 9(7):973–984CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kalb R (2005) The protean actions of neurotrophins and their receptors on the life and death of neurons. Trends Neurosci 28(1):5–11CrossRefPubMedGoogle Scholar
  24. Kennedy CJ, Rakoczy PE, Constable IJ (1995) Lipofuscin of the retinal pigment epithelium: a review. Eye (Lond) 9(Pt 6):763–771CrossRefGoogle Scholar
  25. Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA et al (2008),Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4(2):151–175Google Scholar
  26. Kuse Y, Ogawa K, Tsuruma K, Shimazawa M, Hara H (2014) Damage of p hotoreceptor-derived cells in culture induced by light emitting diode-derived blue light. Sci Rep 4:5223CrossRefPubMedPubMedCentralGoogle Scholar
  27. Leow SN, Luu CD, Hairul Nizam MH, Mok PL, Ruhaslizan R, Wong HS, Wan Abdul Halim WH, Ng MH, Ruszymah BH, Chowdhury SR, Bastion ML, Then KY (2015) Safety and efficacy of human Wharton’s Jelly-derived mesenchymal stem cells therapy for retinal degeneration. PLoS One 10(6):e0128973CrossRefPubMedPubMedCentralGoogle Scholar
  28. Li R, Wen R, Banzon T, Maminishkis A, Miller SS (2011) CNTF mediates neurotrophic factor secretion and fluid absorption in human retinal pigment epithelium. PLoS One 6(9):e23148CrossRefPubMedPubMedCentralGoogle Scholar
  29. Liang FQ, Godley BF (2003) Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res 76(4):397–403CrossRefPubMedGoogle Scholar
  30. Menzies FM, Fleming A, Rubinsztein DC (2015) Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci 16(6):345–357CrossRefPubMedGoogle Scholar
  31. Mitter SK, Rao HV, Qi X, Cai J, Sugrue A, Dunn WA Jr, Grant MB, Boulton ME (2012) Autophagy in the retina: a potential role in age-related macular degeneration. Adv Exp Med Biol 723:83–90CrossRefPubMedPubMedCentralGoogle Scholar
  32. Munemasa Y, Kitaoka Y (2015) Autophagy in axonal degeneration in glaucomatous optic neuropathy. Prog Retin Eye Res 47:1–18CrossRefPubMedGoogle Scholar
  33. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13CrossRefPubMedGoogle Scholar
  34. Musiwaro P, Smith M, Manifava M, Walker SA, Ktistakis NT (2013) Characteristics and requirements of basal autophagy in HEK 293 cells. Autophagy 9(9):1407–1417CrossRefPubMedGoogle Scholar
  35. Nadri S, Yazdani S, Arefian E, Gohari Z, Eslaminejad MB, Kazemi B, Soleimani M (2013) Mesenchymal stem cells from trabecular meshwork become photoreceptor-like cells on amniotic membrane. Neurosci Lett 541:43–48CrossRefPubMedGoogle Scholar
  36. Park HY, Kim JH, Park CK (2012) Activation of autophagy induces retinal ganglion cell death in a chronic hypertensive glaucoma model. Cell Death Dis 3:e290CrossRefPubMedPubMedCentralGoogle Scholar
  37. Shang YM, Wang GS, Sliney D, Yang CH, Lee LL (2014) White light-emitting diodes (LEDs) at domestic lighting levels and retinal injury in a rat model. Environ Health Perspect 122(3):269–276PubMedGoogle Scholar
  38. Shi G, Maminishkis A, Banzon T, Jalickee S, Li R, Hammer J, Miller SS (2008) Control of chemokine gradients by the retinal pigment epithelium. Invest Ophthalmol Vis Sci 49(10):4620–4630CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sliney DH (2002) How light reaches the eye and its components. Int J Toxicol 21(6):501–509CrossRefPubMedGoogle Scholar
  40. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85(3):845–881CrossRefPubMedGoogle Scholar
  41. Subramanian P, Mendez EF, Becerra SP (2016) A novel inhibitor of 5-lipoxygenase (5-LOX) prevents oxidative stress-induced cell death of retinal pigment epithelium (RPE) cells. Invest Ophthalmol Vis Sci 57(11):4581–4588CrossRefPubMedPubMedCentralGoogle Scholar
  42. Tanida I, Waguri S (2010) Measurement of autophagy in cells and tissues. Methods Mol Biol 648:193–214CrossRefPubMedGoogle Scholar
  43. Turner PL, Mainster MA (2008) Circadian photoreception: ageing and the eye’s important role in systemic health. Br J Ophthalmol 92(11):1439–1444CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wang AL, Lukas TJ, Yuan M, Du N, Tso MO, Neufeld AH (2009) Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration. PLoS One 4(1):e4160CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wang S, Lu B, Girman S, Duan J, McFarland T, Zhang QS, Grompe M, Adamus G, Appukuttan B, Lund R (2010) Non-invasive stem cell therapy in a rat model for retinal degeneration and vascular pathology. PLoS One 5(2):e9200CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wei T, Kang Q, Ma B, Gao S, Li X, Liu Y (2015) Activation of autophagy and paraptosis in retinal ganglion cells after retinal ischemia and reperfusion injury in rats. Exp Ther Med 9(2):476–482CrossRefPubMedGoogle Scholar
  47. Wu J, Seregard S, Spangberg B, Oskarsson M, Chen E (1999) Blue light induced apoptosis in rat retina. Eye (Lond) 13(Pt 4):577–583CrossRefGoogle Scholar
  48. Xia T, and Rizzolo LJ, (2017),Effects of diabetic retinopathy on the barrier functions of the retinal pigment epithelium. Vision Res Google Scholar
  49. Xu W, Wang X, Xu G, Guo J (2013a) Basic fibroblast growth factor expression is implicated in mesenchymal stem cells response to light-induced retinal injury. Cell Mol Neurobiol 33(8):1171–1179CrossRefPubMedGoogle Scholar
  50. Xu W, Wang X, Xu G, Guo J (2013b) Light-induced retinal injury enhanced neurotrophins secretion and neurotrophic effect of mesenchymal stem cells in vitro. Arq Bras Oftalmol 76(2):105–110CrossRefPubMedGoogle Scholar
  51. Zhang D, Qiu W, Wang P, Zhang P, Zhang F, Wang P, and Sun Y, (2017),Autophagy can alleviate severe burn-induced damage to the intestinal tract in mice. Surgery Google Scholar
  52. Zhu Y, Zhao KK, Tong Y, Zhou YL, Wang YX, Zhao PQ, Wang ZY (2016) Exogenous NAD(+) decreases oxidative stress and protects H2O2-treated RPE cells against necrotic death through the up-regulation of autophagy. Sci Rep 6:26322CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2018

Authors and Affiliations

  1. 1.Department of OphthalmologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhou CityChina
  2. 2.Fujian Institute of OphthalmologyFuzhou CityChina

Personalised recommendations