Advertisement

HIF1α deletion facilitates adipose stem cells to repair renal fibrosis in diabetic mice

  • Qun Tang
  • Hua Wu
  • Jiushi Lei
  • Chun Yi
  • Wenfeng Xu
  • Wenqu Lan
  • Fang Yang
  • Chunyan Liu
Article
  • 142 Downloads

Abstract

Adipose stem cell (ASC) transplantation is a promising therapeutic strategy for diabetic renal fibrosis. Hypoxia-inducible factor 1α (HIF1α) is a negative regulatory factor of mitochondrial function. In the current study, we aimed to explore if HIF1α deletion protects against hyperglycemia-induced ASC damage and enhances the therapeutic efficiency of ASCs in diabetic renal fibrosis. Our data indicated that HIF1α was upregulated in ASCs in response to high glucose stimulation. Higher HIF1α expression was associated with ASC apoptosis and proliferation arrest. Loss of HIF1α activated mitophagy protecting ASCs against high glucose-induced apoptosis via preserving mitochondrial function. Transplanting HIF1α-deleted ASCs in db/db mice improved the abnormalities in glucose metabolic parameters, including the levels of glucose, insulin, C-peptide, HbA1c, and inflammatory markers. In addition, the engraftment of HIF1α-modified ASCs also reversed renal function, decreased renal hypertrophy, and ameliorated renal histological changes in db/db mice. Functional studies confirmed that HIF1α-modified ASCs reduced renal fibrosis. Collectively, our results demonstrate that ASCs may be a promising therapeutic treatment for ameliorating diabetes and the development of renal fibrosis and that the loss of HIF1α in ASCs may further increase the efficiency of stem cell-based therapy. These findings provide a new understanding about the protective effects of HIF1α silencing on ASCs and offer a new strategy for promoting the therapeutic efficacy of ASCs in diabetic renal fibrosis.

Keywords

ASCs Mitophagy HIF1α Diabetic renal fibrosis 

Notes

Authors’ contribution

QT, CYL, and HW conceived the research; QT, JSL, CY, WFX, and WQL performed the experiments; FY and QT analyzed the data; QT and CYL wrote the manuscript; all authors participated in discussing and revising the manuscript.

Funding

This study was supported by project supported by National Natural Science Foundation of People’s Republic of China (No. 81503442, No. 81603470) and research project of Hunan Provincial Department of Education (No. 17B197, No. 16B196).

Compliance with ethical standards

Our study was carried out in accordance with the guidelines of the Ethics Committee of Hunan University of Chinese Medicine, Changsha, China. The experimental protocol was approved by Ethics Committee of Hunan University of Chinese Medicine, Changsha, China.

Conflict of interest

The authors declare that they have no conflict of interest.

Disclaimer

The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  1. Abdel Aziz MT, Wassef MA, Ahmed HH, Rashed L, Mahfouz S, Aly MI, Hussein RE, Abdelaziz M (2014) The role of bone marrow derived-mesenchymal stem cells in attenuation of kidney function in rats with diabetic nephropathy. Diabetol Metab Syndr 6(1):34.  https://doi.org/10.1186/1758-5996-6-34 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Azushima K, Gurley SB, Coffman TM (2018) Modelling diabetic nephropathy in mice. Nat Rev Nephrol 14(1):48–56.  https://doi.org/10.1038/nrneph.2017.142 CrossRefPubMedGoogle Scholar
  3. Baban B, Liu JY, Payne S, Abebe W, Yu JC, Mozaffari MS (2016) Status of stem cells in diabetic nephropathy: predictive and preventive potentials. EPMA J 7:21.  https://doi.org/10.1186/s13167-016-0070-6 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bakker WJ, Harris IS, Mak TW (2007) FOXO3a is activated in response to hypoxic stress and inhibits HIF1-induced apoptosis via regulation of CITED2. Mol Cell 28(6):941–953.  https://doi.org/10.1016/j.molcel.2007.10.035 CrossRefPubMedGoogle Scholar
  5. Bhatia M, McGrath KL, Di Trapani G, Charoentong P, Shah F, King MM, Clarke FM, Tonissen KF (2016) The thioredoxin system in breast cancer cell invasion and migration. Redox Biol 8:68–78.  https://doi.org/10.1016/j.redox.2015.12.004 CrossRefPubMedGoogle Scholar
  6. Capparelli C, Whitaker-Menezes D, Guido C, Balliet R, Pestell TG, Howell A, Sneddon S, Pestell RG, Martinez-Outschoorn U, Lisanti MP, Sotgia F (2012) CTGF drives autophagy, glycolysis and senescence in cancer-associated fibroblasts via HIF1 activation, metabolically promoting tumor growth. Cell Cycle 11(12):2272–2284.  https://doi.org/10.4161/cc.20717 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Carloni S, Favrais G, Saliba E, Albertini MC, Chalon S, Longini M, Gressens P, Buonocore G, Balduini W (2016) Melatonin modulates neonatal brain inflammation through endoplasmic reticulum stress, autophagy, and miR-34a/silent information regulator 1 pathway. J Pineal Res 61(3):370–380.  https://doi.org/10.1111/jpi.12354 CrossRefPubMedGoogle Scholar
  8. Chen YF, Pandey S, Day CH, Chen YF, Jiang AZ, Ho TJ, Chen RJ, Padma VV, Kuo WW, Huang CY (2018) Synergistic effect of HIF-1alpha and FoxO3a trigger cardiomyocyte apoptosis under hyperglycemic ischemia condition. J Cell Physiol 233(4):3660–3671.  https://doi.org/10.1002/jcp.26235 CrossRefPubMedGoogle Scholar
  9. Das N, Mandala A, Naaz S, Giri S, Jain M, Bandyopadhyay D, Reiter RJ, Roy SS (2017) Melatonin protects against lipid-induced mitochondrial dysfunction in hepatocytes and inhibits stellate cell activation during hepatic fibrosis in mice. J Pineal Res 62(4):e12404.  https://doi.org/10.1111/jpi.12404
  10. de Luxan-Delgado B, Potes Y, Rubio-Gonzalez A, Caballero B, Solano JJ, Fernandez-Fernandez M, Bermudez M, Rodrigues Moreira Guimaraes M, Vega-Naredo I, Boga JA, Coto-Montes A (2016) Melatonin reduces endoplasmic reticulum stress and autophagy in liver of leptin-deficient mice. J Pineal Res 61(1):108–123.  https://doi.org/10.1111/jpi.12333 CrossRefPubMedGoogle Scholar
  11. Dong X, Fu J, Yin X, Qu C, Yang C, He H, Ni J (2017) Induction of apoptosis in HepaRG cell line by aloe-emodin through generation of reactive oxygen species and the mitochondrial pathway. Cell Physiol Biochem 42(2):685–696.  https://doi.org/10.1159/000477886 CrossRefPubMedGoogle Scholar
  12. Feng L, Tao L, Dawei H, Xuliang L, Xiaodong L (2014) HIF-1alpha expression correlates with cellular apoptosis, angiogenesis and clinical prognosis in rectal carcinoma. Pathol Oncol Res 20:603–610CrossRefPubMedGoogle Scholar
  13. Fuhrmann DC, Brune B (2017) Mitochondrial composition and function under the control of hypoxia. Redox Biol 12:208–215.  https://doi.org/10.1016/j.redox.2017.02.012 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Griffiths HR, Gao D, Pararasa C (2017) Redox regulation in metabolic programming and inflammation. Redox Biol 12:50–57CrossRefPubMedPubMedCentralGoogle Scholar
  15. Haller H, Ji L, Stahl K, Bertram A, Menne J (2017) Molecular mechanisms and treatment strategies in diabetic nephropathy: new avenues for calcium dobesilate-free radical scavenger and growth factor inhibition. Biomed Res Int 2017:1909258CrossRefPubMedPubMedCentralGoogle Scholar
  16. Han J, Weisbrod RM, Shao D, Watanabe Y, Yin X, Bachschmid MM, Seta F, Janssen-Heininger YM, Matsui R, Zang M, Hamburg NM, Cohen RA (2016) The redox mechanism for vascular barrier dysfunction associated with metabolic disorders: glutathionylation of Rac1 in endothelial cells. Redox Biol 9:306–319.  https://doi.org/10.1016/j.redox.2016.09.003 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Han L, Wang H, Li L, Li X, Ge J, Reiter RJ, Wang Q (2017) Melatonin protects against maternal obesity-associated oxidative stress and meiotic defects in oocytes via the SIRT3-SOD2-dependent pathway. J Pineal Res 63(3):e12431.  https://doi.org/10.1111/jpi.12431
  18. Heppner DE, van der Vliet A (2016) Redox-dependent regulation of epidermal growth factor receptor signaling. Redox Biol 8:24–27.  https://doi.org/10.1016/j.redox.2015.12.002 CrossRefPubMedGoogle Scholar
  19. Ho HY, Lin CW, Chien MH, Reiter RJ, Su SC, Hsieh YH, Yang SF (2016) Melatonin suppresses TPA-induced metastasis by downregulating matrix metalloproteinase-9 expression through JNK/SP-1 signaling in nasopharyngeal carcinoma. J Pineal Res 61(4):479–492.  https://doi.org/10.1111/jpi.12365 CrossRefPubMedGoogle Scholar
  20. Iggena D, Winter Y, Steiner B (2017) Melatonin restores hippocampal neural precursor cell proliferation and prevents cognitive deficits induced by jet lag simulation in adult mice. J Pineal Res 62Google Scholar
  21. Jiang Y, Zhang W, Xu S, Lin H, Sui W, Liu H, Peng L, Fang Q, Chen L, Lou J (2017) Transplantation of human fetal pancreatic progenitor cells ameliorates renal injury in streptozotocin-induced diabetic nephropathy. J Transl Med 15(147):147.  https://doi.org/10.1186/s12967-017-1253-1 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jin Q, Li R, Hu N, Xin T, Zhu P, Hu S, Ma S, Zhu H, Ren J, Zhou H (2018) DUSP1 alleviates cardiac ischemia/reperfusion injury by suppressing the Mff-required mitochondrial fission and Bnip3-related mitophagy via the JNK pathways. Redox Biol 14:576–587.  https://doi.org/10.1016/j.redox.2017.11.004 CrossRefPubMedGoogle Scholar
  23. Lee K, Back K (2017) Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield. J Pineal Res 62(3):e12392.  https://doi.org/10.1111/jpi.12392
  24. Lin YW, Lee LM, Lee WJ, Chu CY, Tan P, Yang YC, Chen WY, Yang SF, Hsiao M, Chien MH (2016) Melatonin inhibits MMP-9 transactivation and renal cell carcinoma metastasis by suppressing Akt-MAPKs pathway and NF-kappaB DNA-binding activity. J Pineal Res 60(3):277–290.  https://doi.org/10.1111/jpi.12308 CrossRefPubMedGoogle Scholar
  25. Liu DC, Zheng X, Zho Y, Yi WR, Li ZH, Hu X, Yu AX (2017a) HIF-1alpha inhibits IDH-1 expression in osteosarcoma. Oncol Rep 38(1):336–342.  https://doi.org/10.3892/or.2017.5655 CrossRefPubMedGoogle Scholar
  26. Liu L, Li H, Cui Y, Li R, Meng F, Ye Z, Zhang X (2017b) Calcium channel opening rather than the release of ATP causes the apoptosis of osteoblasts induced by overloaded mechanical stimulation. Cell Physiol Biochem 42:441–454CrossRefPubMedGoogle Scholar
  27. Liu Y, Tang SC (2016) Recent progress in stem cell therapy for diabetic nephropathy. Kidney Dis (Basel) 2(1):20–27.  https://doi.org/10.1159/000441913 CrossRefGoogle Scholar
  28. Lu CC, Ma KL, Ruan XZ, Liu BC (2017) The emerging roles of microparticles in diabetic nephropathy. Int J Biol Sci 13(9):1118–1125.  https://doi.org/10.7150/ijbs.21140 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Macher-Goeppinger S, Keith M, Hatiboglu G, Hohenfellner M, Schirmacher P, Roth W, Tagscherer KE (2017) Expression and functional characterization of the BNIP3 protein in renal cell carcinomas. Transl Oncol 10:869–875CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mailloux RJ, Craig Ayre D, Christian SL (2016) Induction of mitochondrial reactive oxygen species production by GSH mediated S-glutathionylation of 2-oxoglutarate dehydrogenase. Redox Biol 8:285–297CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mailloux RJ, Treberg JR (2016) Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria. Redox Biol 8:110–118.  https://doi.org/10.1016/j.redox.2015.12.010 CrossRefPubMedGoogle Scholar
  32. Martinez-Outschoorn UE, Trimmer C, Lin Z, Whitaker-Menezes D, Chiavarina B, Zhou J, Wang C, Pavlides S, Martinez-Cantarin MP, Capozza F, Witkiewicz AK, Flomenberg N, Howell A, Pestell RG, Caro J, Lisanti MP, Sotgia F (2010) Autophagy in cancer associated fibroblasts promotes tumor cell survival: role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment. Cell Cycle 9(17):3515–3533.  https://doi.org/10.4161/cc.9.17.12928 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Matsui R, Watanabe Y, Murdoch CE (2017) Redox regulation of ischemic limb neovascularization—what we have learned from animal studies. Redox Biol 12:1011–1019CrossRefPubMedPubMedCentralGoogle Scholar
  34. Nagaishi K, Mizue Y, Chikenji T, Otani M, Nakano M, Konari N, Fujimiya M (2016) Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes. Sci Rep 6:34842CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pan XH, Yang XY, Yao X, Sun XM, Zhu L, Wang JX, Pang RQ, Cai XM, Dai JJ, Ruan GP (2014) Bone-marrow mesenchymal stem cell transplantation to treat diabetic nephropathy in tree shrews. Cell Biochem Funct 32(5):453–463.  https://doi.org/10.1002/cbf.3037 PubMedGoogle Scholar
  36. Paulini J, Higuti E, Bastos RM, Gomes SA, Rangel EB (2016) Mesenchymal stem cells as therapeutic candidates for halting the progression of diabetic nephropathy. Stem Cells Int 2016(9521629):1–16.  https://doi.org/10.1155/2016/9521629 CrossRefGoogle Scholar
  37. Peleli M, Zollbrecht C, Montenegro MF, Hezel M, Zhong J, Persson EG, Holmdahl R, Weitzberg E, Lundberg JO, Carlstrom M (2016) Enhanced XOR activity in eNOS-deficient mice: effects on the nitrate-nitrite-NO pathway and ROS homeostasis. Free Radic Biol Med 99:472–484.  https://doi.org/10.1016/j.freeradbiomed.2016.09.004 CrossRefPubMedGoogle Scholar
  38. Shi C, Cai Y, Li Y, Li Y, Hu N, Ma S, Hu S, Zhu P, Wang W, Zhou H (2018) Yap promotes hepatocellular carcinoma metastasis and mobilization via governing cofilin/F-actin/lamellipodium axis by regulation of JNK/Bnip3/SERCA/CaMKII pathways. Redox Biol 14:59–71.  https://doi.org/10.1016/j.redox.2017.08.013 CrossRefPubMedGoogle Scholar
  39. Sigala F, Efentakis P, Karageorgiadi D, Filis K, Zampas P, Iliodromitis EK, Zografos G, Papapetropoulos A, Andreadou I (2017) Reciprocal regulation of eNOS, H2S and CO-synthesizing enzymes in human atheroma: correlation with plaque stability and effects of simvastatin. Redox Biol 12:70–81.  https://doi.org/10.1016/j.redox.2017.02.006 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Smith MR, Vayalil PK, Zhou F, Benavides GA, Beggs RR, Golzarian H, Nijampatnam B, Oliver PG, Smith RA, Murphy MP, Velu SE, Landar A (2016) Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels. Redox Biol 8:136–148.  https://doi.org/10.1016/j.redox.2016.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tamura H, Kawamoto M, Sato S, Tamura I, Maekawa R, Taketani T, Aasada H, Takaki E, Nakai A, Reiter RJ, Sugino N (2017) Long-term melatonin treatment delays ovarian aging. J Pineal Res 62(2):e12381.  https://doi.org/10.1111/jpi.12381
  42. Tan DX, Hardeland R, Back K, Manchester LC, Alatorre-Jimenez MA, Reiter RJ (2016) On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species. J Pineal Res 61(1):27–40.  https://doi.org/10.1111/jpi.12336 CrossRefPubMedGoogle Scholar
  43. Wu T, Qiao S, Shi C, Wang S, Ji G (2017) Metabolomics window into diabetic complications. J Diabetes Investig.  https://doi.org/10.1111/jdi.12723
  44. Xu J, Wu Y, Lu G, Xie S, Ma Z, Chen Z, Shen HM, Xia D (2017) Importance of ROS-mediated autophagy in determining apoptotic cell death induced by physapubescin B. Redox Biol 12:198–207.  https://doi.org/10.1016/j.redox.2017.02.017 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Xu S, Pi H, Zhang L, Zhang N, Li Y, Zhang H, Tang J, Li H, Feng M, Deng P, Guo P, Tian L, Xie J, He M, Lu Y, Zhong M, Zhang Y, Wang W, Reiter RJ, Yu Z, Zhou Z (2016) Melatonin prevents abnormal mitochondrial dynamics resulting from the neurotoxicity of cadmium by blocking calcium-dependent translocation of Drp1 to the mitochondria. J Pineal Res 60(3):291–302.  https://doi.org/10.1111/jpi.12310 CrossRefPubMedGoogle Scholar
  46. Yang HH, Chen Y, Gao CY, Cui ZT, Yao JM (2017) Protective effects of MicroRNA-126 on human cardiac microvascular endothelial cells against hypoxia/reoxygenation-induced injury and inflammatory response by activating PI3K/Akt/eNOS signaling pathway. Cell Physiol Biochem 42(2):506–518.  https://doi.org/10.1159/000477597 CrossRefPubMedGoogle Scholar
  47. Yu S, Wang X, Geng P, Tang X, Xiang L, Lu X, Li J, Ruan Z, Chen J, Xie G, Wang Z, Ou J, Peng Y, Luo X, Zhang X, Dong Y, Pang X, Miao H, Chen H, Liang H (2017) Melatonin regulates PARP1 to control the senescence-associated secretory phenotype (SASP) in human fetal lung fibroblast cells. J Pineal Res 63(1):e12405.  https://doi.org/10.1111/jpi.12405
  48. Zhang Y, Zhou H, Wu W, Shi C, Hu S, Yin T, Ma Q, Han T, Zhang Y, Tian F, Chen Y (2016) Liraglutide protects cardiac microvascular endothelial cells against hypoxia/reoxygenation injury through the suppression of the SR-Ca(2+)-XO-ROS axis via activation of the GLP-1R/PI3K/Akt/survivin pathways. Free Radic Biol Med 95:278–292.  https://doi.org/10.1016/j.freeradbiomed.2016.03.035 CrossRefPubMedGoogle Scholar
  49. Zhao S, Li L, Wang S, Yu C, Xiao B, Lin L, Cong W, Cheng J, Yang W, Sun W, Cui S (2016) H2O2 treatment or serum deprivation induces autophagy and apoptosis in naked mole-rat skin fibroblasts by inhibiting the PI3K/Akt signaling pathway. Oncotarget 7(51):84839–84850.  https://doi.org/10.18632/oncotarget.13321 PubMedPubMedCentralGoogle Scholar
  50. Zhou H, Du W, Li Y, Shi C, Hu N, Ma S, Wang W, Ren J (2018) Effects of melatonin on fatty liver disease: the role of NR4A1/DNA-PKcs/p53 pathway, mitochondrial fission, and mitophagy. J Pineal Res 64(1):e12450.  https://doi.org/10.1111/jpi.12450
  51. Zhou H, Hu S, Jin Q, Shi C, Zhang Y, Zhu P, Ma Q, Tian F, Chen Y (2017a) Mff-dependent mitochondrial fission contributes to the pathogenesis of cardiac microvasculature ischemia/reperfusion injury via induction of mROS-mediated cardiolipin oxidation and HK2/VDAC1 disassociation-involved mPTP opening. J Am Heart Assoc 6(3):e005328.  https://doi.org/10.1161/JAHA.116.005328
  52. Zhou H, Li D, Shi C, Xin T, Yang J, Zhou Y, Hu S, Tian F, Wang J, Chen Y (2015a) Effects of exendin-4 on bone marrow mesenchymal stem cell proliferation, migration and apoptosis in vitro. Sci Rep 5:12898CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zhou H, Li D, Zhu P, Hu S, Hu N, Ma S, Zhang Y, Han T, Ren J, Cao F, Chen Y (2017b) Melatonin suppresses platelet activation and function against cardiac ischemia/reperfusion injury via PPARgamma/FUNDC1/mitophagy pathways. J Pineal Res 63(4):e12438.  https://doi.org/10.1111/jpi.12438
  54. Zhou H, Yang J, Xin T, Li D, Guo J, Hu S, Zhou S, Zhang T, Zhang Y, Han T, Chen Y (2014) Exendin-4 protects adipose-derived mesenchymal stem cells from apoptosis induced by hydrogen peroxide through the PI3K/Akt-Sfrp2 pathways. Free Radic Biol Med 77:363–375.  https://doi.org/10.1016/j.freeradbiomed.2014.09.033 CrossRefPubMedGoogle Scholar
  55. Zhou H, Yang J, Xin T, Zhang T, Hu S, Zhou S, Chen G, Chen Y (2015b) Exendin-4 enhances the migration of adipose-derived stem cells to neonatal rat ventricular cardiomyocyte-derived conditioned medium via the phosphoinositide 3-kinase/Akt-stromal cell-derived factor-1alpha/CXC chemokine receptor 4 pathway. Mol Med Rep 11(6):4063–4072.  https://doi.org/10.3892/mmr.2015.3243 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Zhou H, Zhang Y, Hu S, Shi C, Zhu P, Ma Q, Jin Q, Cao F, Tian F, Chen Y (2017d) Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis. J Pineal Res 63(1):e12413.  https://doi.org/10.1111/jpi.12413 CrossRefPubMedCentralGoogle Scholar
  57. Zhou H, Zhu P, Guo J, Hu N, Wang S, Li D, Hu S, Ren J, Cao F, Chen Y (2017e) Ripk3 induces mitochondrial apoptosis via inhibition of FUNDC1 mitophagy in cardiac IR injury. Redox Biol 13:498–507.  https://doi.org/10.1016/j.redox.2017.07.007 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Zhou W, Yu L, Fan J, Wan B, Jiang T, Yin J, Huang Y, Li Q, Yin G, Hu Z (2017c) Endogenous parathyroid hormone promotes fracture healing by increasing expression of BMPR2 through cAMP/PKA/CREB pathway in mice. Cell Physiol Biochem 42(2):551–563.  https://doi.org/10.1159/000477605 CrossRefPubMedGoogle Scholar
  59. Zhu H, Jin Q, Li Y, Ma Q, Wang J, Li D, Zhou H, Chen Y (2017) Melatonin protected cardiac microvascular endothelial cells against oxidative stress injury via suppression of IP3R-[Ca(2+)]c/VDAC-[Ca(2+)]m axis by activation of MAPK/ERK signaling pathway. Cell Stress Chaperones 23(1):101–113.  https://doi.org/10.1007/s12192-017-0827-4 CrossRefPubMedGoogle Scholar
  60. Zhu YW, Yan JK, Li JJ, Ou YM, Yang Q (2016) Knockdown of radixin suppresses gastric cancer metastasis in vitro by up-regulation of E-cadherin via NF-kappaB/snail pathway. Cell Physiol Biochem 39(6):2509–2521.  https://doi.org/10.1159/000452518 CrossRefPubMedGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2018

Authors and Affiliations

  • Qun Tang
    • 1
  • Hua Wu
    • 2
  • Jiushi Lei
    • 1
  • Chun Yi
    • 1
  • Wenfeng Xu
    • 1
  • Wenqu Lan
    • 1
  • Fang Yang
    • 1
  • Chunyan Liu
    • 1
  1. 1.Department of Pathology, Medical schoolHunan University of Chinese MedicineChangshaChina
  2. 2.Hunan Furong Judicial Authentication CenterThe Second People’s Hospital of Hunan ProvinceChangshaChina

Personalised recommendations