Advertisement

Expression profiles of microRNAs in oxidized low-density lipoprotein-stimulated RAW 264.7 cells

  • Xiaokai Li
  • Siyuan Feng
  • Yi Luo
  • Keren Long
  • Zhenghao Lin
  • Jideng Ma
  • Anan Jiang
  • Long Jin
  • Qianzi Tang
  • Mingzhou Li
  • Xun Wang
Article

Abstract

Macrophage-derived foam cells were one of the hallmarks of atherosclerosis, and microRNAs played an important role in the formation of foam cells. In order to explore the roles of miRNA in the formation of foam cells, we investigated miRNA expression profiles in foam cells through high-throughput sequencing technology. A total of 84 miRNAs were differentially expressed between RAW 264.7 macrophages and foam cells induced by ox-LDL. Thirty miRNAs were upregulated and 54 miRNAs were downregulated. GO terms and KEGG pathways analysis revealed that the target genes of most of DE miRNAs were mainly enriched in “cell differentiation,” “endocytosis,” “MAPK signaling pathway,” and “FoxO signaling pathway.” The target genes of some DE miRNAs were enriched in “Insulin signaling pathway,” “Hippo signaling pathway,” “TNF signaling pathway,” “NF-kappa B signaling pathway,” and “cell death.” Using bioinformatics analyses and dual-luciferase reporter assays, we found that miR-28a-5p and miR-30c-1-3p directly inhibited LRAD3 and LOX-1 mRNA expression through targeting the 3’UTR of LRAD3 and LOX-1 mRNA, respectively. Our study indicates that miRNAs are extensively involved in the formation of foam cells, and provides a valuable resource for further study the role of miRNAs in atherosclerosis.

Keywords

Foam cells miRNAs Atherosclerosis High-throughput sequencing Expression profile 

Notes

Author contribution

Xiaokai Li, Yi Luo, Mingzhou Li, and Xun Wang conceived and designed the experiments. Xiaokai Li, Yi Luo, and Zhenghao Lin performed the experiments. Siyuan Feng, Xiaokai Li, and Keren Long analyzed the data. Mingzhou Li and Xun Wang contributed reagents/materials. Xun Wang, Jideng Ma, Anan Jiang, Long Jin, and Qianzi Tang analyzed all of the experiments. Xiaokai Li and Xun Wang wrote the paper. Xun Wang and Mingzhou Li revised the paper.

Funding

The study was funded by the National Natural Science Foundation of China (31522055, 31530073 and 31472081), the Project of Sichuan Education Department (15ZA0008), the Application Basic Research Plan Project of Sichuan Province (2016JY0167), the National Program for Support of Top-notch Young Professionals, the Program for Innovative Research Team of Sichuan Province (2015TD0012), and the Science & Technology Support Program of Sichuan (2016NYZ0042).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11626_2017_225_MOESM1_ESM.xls (22 kb)
ESM 1 (XLS 22 kb)
11626_2017_225_MOESM2_ESM.xls (20 kb)
ESM 2 (XLS 20 kb)
11626_2017_225_MOESM3_ESM.xls (62 kb)
ESM 3 (XLS 62 kb)
11626_2017_225_MOESM4_ESM.xls (42 kb)
ESM 4 (XLS 41 kb)
11626_2017_225_MOESM5_ESM.xlsx (14 kb)
ESM 5 (XLSX 13 kb)
11626_2017_225_MOESM6_ESM.xlsx (13 kb)
ESM 6 (XLSX 13 kb)

References

  1. Chistiakov DA, Bobryshev YV, Orekhov AN (2016) Macrophage-mediated cholesterol handling in atherosclerosis. Journal of Cellular & Molecular Medicine 20(1):17–28.  https://doi.org/10.1111/jcmm.12689CrossRefGoogle Scholar
  2. Cirera-Salinas D, Pauta M, Allen RM, Salerno AG, Ramírez CM, Chamorro-Jorganes A, Wanschel AC, Lasuncion MA, Morales-Ruiz M, Suarez Y (2012) Mir-33 regulates cell proliferation and cell cycle progression. Cell Cycle 11(5):922–933.  https://doi.org/10.4161/cc.11.5.19421CrossRefPubMedPubMedCentralGoogle Scholar
  3. Colles SM, Maxson JM, Carlson SG, Chisolm GM (2001) Oxidized Ldl-induced injury and apoptosis in atherosclerosis. Potential roles for oxysterols. Trends in Cardiovascular Medicine 11(3):131–138.  https://doi.org/10.1016/S1050-1738(01)00106-2CrossRefPubMedGoogle Scholar
  4. Collot-Teixeira S, Martin J, Mcdermott-Roe C, Poston R, Mcgregor JL (2007) Cd36 and macrophages in atherosclerosis. Cardiovasc Res 75(3):468–477.  https://doi.org/10.1016/j.cardiores.2007.03.010CrossRefPubMedGoogle Scholar
  5. Crucet M, Wüst SJ, Spielmann P, Lüscher TF, Wenger RH, Matter CM (2013) Hypoxia enhances lipid uptake in macrophages: role of the scavenger receptors Lox1, Sra, and Cd36. Atherosclerosis 229(1):110–117.  https://doi.org/10.1016/j.atherosclerosis.2013.04.034CrossRefPubMedGoogle Scholar
  6. Fichtlscherer, S., S. D. Rosa, H. Fox, T. Schwietz, C. Liebetrau, M. Weber, C. W. Hamm, T. Roexe, A. Fischer and M. Müller-Ardogan. (2010), Abstract 18146: circulating miRNAs in patients with coronary artery disease, Circulationn, No. 21, pp. A18146Google Scholar
  7. Funk JL, Feingold KR, Moser AH, Grunfeld C (1993) Lipopolysaccharide stimulation of raw 264.7 macrophages induces lipid accumulation and foam cell formation. Atherosclerosis 98(1):67–82.  https://doi.org/10.1016/0021-9150(93)90224-ICrossRefPubMedGoogle Scholar
  8. Glass CK, Witztum JL (2001) Atherosclerosis. The road ahead. Cell 104(4):503–516.  https://doi.org/10.1016/S0092-8674(01)00238-0CrossRefPubMedGoogle Scholar
  9. Guo ZG, Ping-Sheng WU, Jian-Hua LI, Lai WY (2007) Significance of Abca1 effects on Thp-1 macrophage inflammatory cytokines induced by oxidized low density lipoprotein. J Sun Yat-Sen Univ (Med Sci)Google Scholar
  10. Hanyu M, Kume N, Ikeda T, Minami M, Kita T, Komeda M (2001) Vcam-1 expression precedes macrophage infiltration into subendothelium of vein grafts interposed into carotid arteries in hypercholesterolemic rabbits—a potential role in vein graft atherosclerosis. Atherosclerosis 158(2):313–319.  https://doi.org/10.1016/S0021-9150(01)00446-4CrossRefPubMedGoogle Scholar
  11. Hao L, Wang XG, Cheng JD, You SZ, Ma SH, Zhong X, Quan L, Luo B (2014) The up-regulation of endothelin-1 and down-regulation of Mirna-125a-5p, -155, and -199a/B-3p in human atherosclerotic coronary artery. Cardiovasc Pathol 23(4):217–223.  https://doi.org/10.1016/j.carpath.2014.03.009CrossRefPubMedGoogle Scholar
  12. Hergenreider E, Heydt S, Tréguer K, Boettger T, Horrevoets AJ, Zeiher AM, Scheffer MP, Frangakis AS, Yin X, Mayr M (2012) Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 14(3):249–256.  https://doi.org/10.1038/ncb2441CrossRefPubMedGoogle Scholar
  13. Hosin AA, Prasad A, Viiri LE, Davies AH, Shalhoub J (2014) MicroRNAs in atherosclerosis. J Vasc Res 51(5):338–349.  https://doi.org/10.1159/000368193CrossRefPubMedGoogle Scholar
  14. Hsu HY, Twu YC (2000) Tumor necrosis factor-alpha-mediated protein kinases in regulation of scavenger receptor and foam cell formation on macrophage. J Biol Chem 275(52):41035–41048.  https://doi.org/10.1074/jbc.M003464200CrossRefPubMedGoogle Scholar
  15. Huang J, Zhao L, Xing L, Chen D (2010) MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 28(2):357–364.  https://doi.org/10.1002/stem.288PubMedPubMedCentralGoogle Scholar
  16. Huang R, Hu G, Lin B, Lin Z, Sun C (2010) MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human Thp-1 macrophages. Journal of Investigative Medicine the Official Publication of the American Federation for Clinical Research 58(8):961–967.  https://doi.org/10.2310/JIM.0b013e3181ff46d7
  17. Hulsmans M, Keyzer DD, Holvoet P (2011) MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis. Faseb Journal Official Publication of the Federation of American Societies for Experimental Biology 25(8):2515–2527.  https://doi.org/10.1096/fj.11-181149CrossRefPubMedGoogle Scholar
  18. Hwang, H. W. and J. T. Mendell. (2006), MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94(6): 776-780′, Br J Cancer Vol. 94, No. 6, pp. 776–780, DOI:  https://doi.org/10.1038/sj.bjc.6603023
  19. Karunakaran D, Rayner KJ (2016) Macrophage miRNAs in atherosclerosis. Biochim Biophys Acta 1861(12):2087–2093.  https://doi.org/10.1016/j.bbalip.2016.02.006CrossRefPubMedGoogle Scholar
  20. Keidar S, Brook GJ, Rosenblat M, Fuhrman B, Dankner G, Aviram M (1992) Involvement of the macrophage low density lipoprotein receptor-binding domains in the uptake of oxidized low density lipoprotein. Arterioscler Thromb 12(4):484–493.  https://doi.org/10.1161/01.ATV.12.4.484CrossRefPubMedGoogle Scholar
  21. Kundumanisridharan V, Dyukova E, Rd HD, Rao GN (2013) 12/15-Lipoxygenase mediates high-fat diet-induced endothelial tight junction disruption and monocyte transmigration: a new role for 15(S)-hydroxyeicosatetraenoic acid in endothelial cell dysfunction. J Biol Chem 288(22):15830–15842.  https://doi.org/10.1074/jbc.M113.453290CrossRefGoogle Scholar
  22. Lemichez E, Lecuit M, Nassif X, Bourdoulous S (2010) Breaking the wall: targeting of the endothelium by pathogenic bacteria. Nat Rev Microbiol 8(2):93–104.  https://doi.org/10.1038/nrmicro2269CrossRefPubMedGoogle Scholar
  23. Li T, Cao H, Zhuang J, Wan J, Guan M, Yu B, Li X, Zhang W (2011) Identification of Mir-130a, Mir-27b and Mir-210 as serum biomarkers for atherosclerosis obliterans. Clin Chim Acta 412(1):66–70.  https://doi.org/10.1016/j.cca.2010.09.029CrossRefPubMedGoogle Scholar
  24. Loyer X, Potteaux S, Vion AC, Guérin CL, Boulkroun S, Rautou PE, Ramkhelawon B, Esposito B, Dalloz M, Paul JL (2014) Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ Res 114(3):434–443.  https://doi.org/10.1161/CIRCRESAHA.114.302213CrossRefPubMedGoogle Scholar
  25. Lusis AJ (2000) Atherosclerosis. Nature 407(6801):233–241.  https://doi.org/10.1038/35025203CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lv YC, Tang YY, Peng J, Zhao GJ, Yang J, Yao F, Ouyang XP, He PP, Xie W, Tan YL (2014) MicroRNA-19b promotes macrophage cholesterol accumulation and aortic atherosclerosis by targeting Atp-binding cassette transporter A1. Atherosclerosis 236(1):215–226.  https://doi.org/10.1016/j.atherosclerosis.2014.07.005CrossRefPubMedGoogle Scholar
  27. Madrigalmatute J, Rotllan N, Aranda JF, Fernándezhernando C (2013) MicroRNAs and atherosclerosis. Curr Atheroscler Rep 15(5):322.  https://doi.org/10.1007/s11883-013-0322-zCrossRefGoogle Scholar
  28. Mehta JL, Chen J, Hermonat PL, Romeo F, Novelli G (2006) Lectin-like, oxidized low-density lipoprotein receptor-1 (lox-1): a critical player in the development of atherosclerosis and related disorders. Cardiovasc Res 69(1):36–45.  https://doi.org/10.1016/j.cardiores.2005.09.006CrossRefPubMedGoogle Scholar
  29. Menghini R, Casagrande V, Federici M (2013) MicroRNAs in endothelial senescence and atherosclerosis. J Cardiovasc Transl Res 6(6):924–930.  https://doi.org/10.1007/s12265-013-9487-7CrossRefPubMedGoogle Scholar
  30. Montgomery RL, Van RE (2010) MicroRNA regulation as a therapeutic strategy for cardiovascular disease. Curr Drug Targets 11(8)Google Scholar
  31. Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13(10):709–721.  https://doi.org/10.1038/nri3520CrossRefPubMedPubMedCentralGoogle Scholar
  32. Olson EMS, Eric N (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469(7330):336CrossRefPubMedPubMedCentralGoogle Scholar
  33. Raitoharju E, Lyytikäinen LP, Levula M, Oksala N, Mennander A, Tarkka M, Klopp N, Illig T, Kähönen M, Karhunen PJ (2011) Mir-21, Mir-210, Mir-34a, and Mir-146a/B are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis 219(1):211–217.  https://doi.org/10.1016/j.atherosclerosis.2011.07.020CrossRefPubMedGoogle Scholar
  34. Raitoharju E, Oksala N, Lehtimäki T (2013) MicroRNAs in the atherosclerotic plaque. Clin Chem 59(12):1708–1721.  https://doi.org/10.1373/clinchem.2013.204917CrossRefPubMedGoogle Scholar
  35. Ranganathan S, Noyes NC, Migliorini M, Winkles JA, Battey FD, Hyman BT, Smith E, Yepes M, Mikhailenko I, Strickland DK (2011) Lrad3, a novel Ldl receptor family member that modulates amyloid precursor protein trafficking. Journal of Neuroscience the Official Journal of the Society for Neuroscience 31(30):10836–10846.  https://doi.org/10.1523/JNEUROSCI.5065-10.2011CrossRefGoogle Scholar
  36. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. Rna-a Publication of the Rna Society 10(10):1507–1517.  https://doi.org/10.1261/rna.5248604CrossRefGoogle Scholar
  37. Robbesyn F, Salvayre R, Negresalvayre A (2004) Dual role of oxidized Ldl on the Nf-Kappab signaling pathway. Free Radic Res 38(6):541–551.  https://doi.org/10.1080/10715760410001665244CrossRefPubMedGoogle Scholar
  38. Robinson MD, McCarthy DJ, Smyth GK (2010) Edger: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140.  https://doi.org/10.1093/bioinformatics/btp616CrossRefPubMedGoogle Scholar
  39. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340(2):115–126.  https://doi.org/10.1056/NEJM199901143400207CrossRefPubMedGoogle Scholar
  40. Rotllan N, Fernández-Hernando C (2012) MicroRNA regulation of cholesterol metabolism. Cholesterol 2012(8):847849PubMedPubMedCentralGoogle Scholar
  41. Schmitz G, Grandl M (2007) Role of redox regulation and lipid rafts in macrophages during ox-Ldl-mediated foam cell formation. Antioxid Redox Signal 9(9):1499–1518.  https://doi.org/10.1089/ars.2007.1663CrossRefPubMedGoogle Scholar
  42. Shen LH, Zhou L, Wang BY, Pu J, Hu LH, Chai DJ, Wang L, Zeng JZ, He B (2008) Oxidized low-density lipoprotein induces differentiation of Raw264.7 murine macrophage cell line into dendritic-like cells. Atherosclerosis 199(2):257–264.  https://doi.org/10.1016/j.atherosclerosis.2007.12.002CrossRefPubMedGoogle Scholar
  43. Silvestri P, Di RC, Rigattieri S, Fedele S, Todaro D, Ferraiuolo G, Altamura G, Loschiavo P (2009) MicroRNAs and ischemic heart disease: towards a better comprehension of pathogenesis, new diagnostic tools and new therapeutic targets. Recent Patents Cardiovasc Drug Discov 4(2)Google Scholar
  44. Stocker R, Jr KJ (2004) Role of oxidative modifications in atherosclerosis. Physiol Rev 84(4):1381–1478.  https://doi.org/10.1152/physrev.00047.2003CrossRefPubMedGoogle Scholar
  45. Sun X, He S, Wara AK, Icli B, Shvartz E, Tesmenitsky Y, Belkin N, Li D, Blackwell TS, Sukhova GK (2014) Systemic delivery of microRNA-181b inhibits nuclear factor-Κb activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice. Circ Res 114(1):32–40.  https://doi.org/10.1161/CIRCRESAHA.113.302089CrossRefPubMedGoogle Scholar
  46. Szakszon K, Salpietro C, Kakar N, Knegt AC, Oláh E, Dallapiccola B, Borck G (2013) Fluid-phase pinocytosis of Ldl by macrophages: a novel target to reduce macrophage cholesterol accumulation in atherosclerotic lesions, Curr Pharm Des 19(33)Google Scholar
  47. Tabas I (2005) Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arteriosclerosis Thrombosis & Vascular Biology 25(11):2255–2264.  https://doi.org/10.1161/01.ATV.0000184783.04864.9fCrossRefGoogle Scholar
  48. Tappia PS, Dhalla NS (2015) Phospholipases in health and disease. Anticancer Res 35(2):3–38Google Scholar
  49. Tian FJ, An LN, Wang GK, Zhu JQ, Li Q, Zhang YY, Zeng A, Zou J, Zhu RF, Han XS (2014) Elevated microRNA-155 promotes foam cell formation by targeting Hbp1 in atherogenesis. Cardiovasc Res 103(1):100–110.  https://doi.org/10.1093/cvr/cvu070CrossRefPubMedGoogle Scholar
  50. Villiers WJD, Smart EJ (1999) Macrophage scavenger receptors and foam cell formation. J Leukoc Biol 66(5):740–746CrossRefPubMedGoogle Scholar
  51. Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, Dalamagas T, Hatzigeorgiou AG (2015) Diana-Mirpath V3.0: deciphering microRNA function with experimental support. Nucleic Acids Res 43(1):460–466CrossRefGoogle Scholar
  52. Wang F, Long G, Zhao C, Li H, Chaugai S, Wang Y, Chen C, Wang DW (2014) Atherosclerosis-related circulating miRNAs as novel and sensitive predictors for acute myocardial infarction. PLoS One 9(9, e105734)Google Scholar
  53. Wang X (2016) Improving microRNA target prediction by modeling with unambiguously identified microRNA-target pairs from clip-ligation studies. Bioinformatics 32(9):1316–1322.  https://doi.org/10.1093/bioinformatics/btw002CrossRefPubMedGoogle Scholar
  54. Wei X, Liang L, Min Z, Cheng HP, Gong D, Lv YC, Feng Y, He PP, Ouyang XP, Gang L (2016) MicroRNA-27 prevents atherosclerosis by suppressing lipoprotein lipase-induced lipid accumulation and inflammatory response in apolipoprotein E knockout mice. PLoS One 11(6):e0157085CrossRefGoogle Scholar
  55. Wienholds E, Plasterk RHA (2005) MicroRNA function in animal development. FEBS Lett 579(26):5911–5922.  https://doi.org/10.1016/j.febslet.2005.07.070CrossRefPubMedGoogle Scholar
  56. Wong N, Wang X (2015) Mirdb: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 43(Database issue):146–152CrossRefGoogle Scholar
  57. Yao W, Li K, Liao K (2009) Macropinocytosis contributes to the macrophage foam cell formation in Raw264.7 cells. Acta Biochim Biophys Sin 41(9):773–780.  https://doi.org/10.1093/abbs/gmp066CrossRefPubMedGoogle Scholar
  58. Zernecke A (2012) MicroRNAs in the regulation of immune cell functions--implications for atherosclerotic vascular disease. Thromb Haemost 107(4):626–633.  https://doi.org/10.1160/TH11-08-0603CrossRefPubMedGoogle Scholar
  59. Zhang M, Wu JF, Chen WJ, Tang SL, Mo ZC, Tang YY, Li Y, Wang JL, Liu XY, Peng J (2014) MicroRNA-27a/B regulates cellular cholesterol efflux, influx and esterification/hydrolysis in Thp-1 macrophages. Atherosclerosis 234(1):54–64.  https://doi.org/10.1016/j.atherosclerosis.2014.02.008CrossRefPubMedGoogle Scholar
  60. Zhu J, Chen T, Lin Y, Li Z, Mei WM, Zheng X, Pan X, Li Z, Hui Y (2012) Regulation of microRNA-155 in atherosclerotic inflammatory responses by targeting Map3k10. PLoS One 7(11):e46551.  https://doi.org/10.1371/journal.pone.0046551CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2018

Authors and Affiliations

  • Xiaokai Li
    • 1
  • Siyuan Feng
    • 1
  • Yi Luo
    • 1
  • Keren Long
    • 1
  • Zhenghao Lin
    • 1
  • Jideng Ma
    • 1
  • Anan Jiang
    • 1
  • Long Jin
    • 1
  • Qianzi Tang
    • 1
  • Mingzhou Li
    • 1
  • Xun Wang
    • 1
  1. 1.Institute of Animal Genetics and Breeding, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina

Personalised recommendations