miR-152 regulates the proliferation and differentiation of C2C12 myoblasts by targeting E2F3

  • Mailin Gan
  • Jingjing Du
  • Linyuan Shen
  • Dongli Yang
  • Anan Jiang
  • Qiang Li
  • Yanzhi Jiang
  • Guoqing Tang
  • Mingzhou Li
  • Jinyong Wang
  • Xuewei Li
  • Shunhua Zhang
  • Li Zhu


The development of skeletal muscle is a complex process involving the proliferation, differentiation, apoptosis, and changing of muscle fiber types in myoblasts. Many reports have described the involvement of microRNAs in the myogenesis of myoblasts. In this study, we found that the expression of miR-152 was gradually down-regulated during myoblast proliferation, but gradually up-regulated during the differentiation of myoblasts. Transfection with miR-152 mimics restrained cell proliferation and decreased the expression levels of cyclin E, CDK4, and cyclin D1, but promoted myotube formation and significantly increased the mRNA expression levels of MyHC, MyoD, MRF4, and MyoG in C2C12 myoblasts. However, treatment with miR-152 inhibitors promoted cell proliferation and restrained differentiation. Moreover, over-expression of miR-152 significantly decreased E2F3 production in C2C12 myoblasts. A luciferase assay confirmed that miR-152 could bind to the 3′ UTR of E2F3. In conclusion, this study showed that miR-152 inhibited proliferation and promoted myoblast differentiation by targeting E2F3.


miRNA-152 E2F3 Myogenesis C2C12 myoblasts 



siRNA E2F transcription factor 3


Quantitative real-time PCR


Author contribution

Mailin Gan, Jingjing Du, Linyuan Shen, Dongli Yang, and Li Zhu conceived and designed the experiments. Mailin Gan and Jingjing Du performed the experiments. Mailin Gan, Anan Jiang, Qiang Li, and Yanzhi Jiang analyzed the data. Guoqing Tang, Mingzhou Li, Jinyong Wang, Xuewei Li, Shunhua Zhang, and Li Zhu contributed reagents/materials/analysis tools. Mailin Gan and Jingjing Du wrote the paper.


The study was supported by the Chinese National Sci & Tech Support Program (No. 2015BAD03B01-11), the Sichuan Sci & Tech Support Program (No. 16ZC2838, No. 16ZB0038, No. 2016NZ0089), and the earmarked fund for China Agriculture Research System (No. CARS-36-05B).

Compliance with ethical standards

The study has been performed in accordance with the approved guidelines and regulations of the Sichuan Agricultural University.

Conflict of interest

No potential conflict of interest was reported by the authors.

Supplementary material

11626_2017_219_Fig4_ESM.jpg (133 kb)

(JPEG 133 kb)

11626_2017_219_MOESM1_ESM.tif (28.1 mb)
High-resolution image (TIFF 28815 kb)
11626_2017_219_Fig5_ESM.jpg (102 kb)

(JPEG 10 s1 kb)

11626_2017_219_MOESM2_ESM.tif (28.1 mb)
High-resolution image (TIFF 28815 kb)
11626_2017_219_Fig6_ESM.gif (389 kb)

(GIF 389 kb)

11626_2017_219_MOESM3_ESM.tif (14.1 mb)
High-resolution image (TIFF 14415 kb)
11626_2017_219_Fig7_ESM.jpg (110 kb)

(JPEG 110 kb)

11626_2017_219_MOESM4_ESM.tif (28.1 mb)
High-resolution image (TIFF 28815 kb)
11626_2017_219_Fig8_ESM.jpg (108 kb)

(JPEG 108 kb)

11626_2017_219_MOESM5_ESM.tif (28.1 mb)
High-resolution image (TIFF 28815 kb)
11626_2017_219_Fig9_ESM.gif (316 kb)

(GIF 315 kb)

11626_2017_219_MOESM6_ESM.tif (14.1 mb)
High-resolution image (TIFF 14415 kb)
11626_2017_219_Fig10_ESM.gif (6.3 mb)

(GIF 6428 kb)

11626_2017_219_MOESM7_ESM.tif (4.7 mb)
High-resolution image (TIFF 4804 kb)
11626_2017_219_Fig11_ESM.gif (6.4 mb)

(GIF 6568 kb)

11626_2017_219_MOESM8_ESM.tif (4.7 mb)
High-resolution image (TIFF 4804 kb)
11626_2017_219_Fig12_ESM.gif (5.3 mb)

(GIF 5461 kb)

11626_2017_219_MOESM9_ESM.tif (4.7 mb)
High-resolution image (TIFF 4804 kb)
11626_2017_219_Fig13_ESM.gif (6.7 mb)
ESM 10

(GIF 6906 kb)

11626_2017_219_MOESM10_ESM.tif (4.7 mb)
High-resolution image (TIFF 4804 kb)
11626_2017_219_Fig14_ESM.gif (6.3 mb)
ESM 11

(GIF 6407 kb)

11626_2017_219_MOESM11_ESM.tif (4.7 mb)
High-resolution image (TIFF 4804 kb)
11626_2017_219_Fig15_ESM.jpg (129 kb)
ESM 12

(JPEG 128 kb)

11626_2017_219_MOESM12_ESM.tif (28.1 mb)
High-resolution image (TIFF 28815 kb)
11626_2017_219_Fig16_ESM.jpg (99 kb)
ESM 13

(JPEG 98 kb)

11626_2017_219_MOESM13_ESM.tif (28.1 mb)
High-resolution image (TIFF 28815 kb)
11626_2017_219_Fig17_ESM.gif (297 kb)
ESM 14

(GIF 296 kb)

11626_2017_219_MOESM14_ESM.tif (14.1 mb)
High-resolution image (TIFF 14415 kb)
11626_2017_219_Fig18_ESM.jpg (124 kb)
ESM 15

(JPEG 124 kb)

11626_2017_219_MOESM15_ESM.tif (28.1 mb)
High-resolution image (TIFF 28815 kb)
11626_2017_219_Fig19_ESM.jpg (81 kb)
ESM 16

(JPEG 80 kb)

11626_2017_219_MOESM16_ESM.tif (28.1 mb)
High-resolution image (TIFF 28815 kb)
11626_2017_219_Fig20_ESM.gif (254 kb)
ESM 17

(GIF 254 kb)

11626_2017_219_MOESM17_ESM.tif (14.1 mb)
High-resolution image (TIFF 14415 kb)
11626_2017_219_Fig21_ESM.gif (232 kb)
ESM 18

(GIF 232 kb)

11626_2017_219_MOESM18_ESM.tif (14.1 mb)
High-resolution image (TIFF 14415 kb)
11626_2017_219_Fig22_ESM.jpg (120 kb)
ESM 19

(JPEG 120 kb)

11626_2017_219_MOESM19_ESM.tif (28.1 mb)
High-resolution image (TIFF 28815 kb)
11626_2017_219_Fig23_ESM.jpg (82 kb)
ESM 20

(JPEG 82 kb)

11626_2017_219_MOESM20_ESM.tif (28.1 mb)
High-resolution image (TIFF 28815 kb)


  1. Abe D, Saito T, Nogata Y (2016) Rosmarinic acid regulates fatty acid and glucose utilization by activating the CaMKK/AMPK pathway in C2C12 myotubes. Food Sci Technol Res 22(6):779–785. CrossRefGoogle Scholar
  2. Berkes CA, Tapscott SJ (2005) MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol 16(4-5):585–595. CrossRefPubMedGoogle Scholar
  3. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38(2):228–233CrossRefPubMedGoogle Scholar
  4. Chen HZ, Tsai SY, Leone G (2009) Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer 9(11):785–797. CrossRefPubMedGoogle Scholar
  5. Chen JF, Tao Y, Li J, Deng Z, Yan Z, Xiao X, Wang DZ (2010) microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol 190(5):867–879. CrossRefPubMedGoogle Scholar
  6. Crist CG, Montarras D, Pallafacchina G, Rocancourt D, Cumano A, Conway SJ, Buckingham M (2009) Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc Natl Acad Sci U S A 106(32):13383–13387. CrossRefPubMedGoogle Scholar
  7. Dvinge H, Bertone P (2009) HTqPCR: high-throughput analysis and visualization of quantitative real-time PCR data in R. Bioinformatics 25(24):3325–3326. CrossRefPubMedGoogle Scholar
  8. He J, Wang F, Zhang P, Li W, Wang J, Li J, Liu H, Chen X (2017) miR-491 inhibits skeletal muscle differentiation through targeting myomaker. Arch Biochem Biophys 30:625–626Google Scholar
  9. Huang L, Luo J, Cai Q, Pan Q, Zeng H, Guo Z, Dong W, Huang J, Lin T (2011) MicroRNA-125b suppresses the development of bladder cancer by targeting E2F3. Int J Cancer 128(8):1758–1769. CrossRefPubMedGoogle Scholar
  10. Huang WW, Yang JS, Pai SJ, PP W, Chang SJ, Chueh FS, Fan MJ, Chiou SM, Kuo HM, Yeh CC (2012) Bufalin induces G0/G1 phase arrest through inhibiting the levels of cyclin D, cyclin E, CDK2 and CDK4, and triggers apoptosis via mitochondrial signaling pathway in T24 human bladder cancer cells. Mutat Res 732(1-2):26–33. CrossRefPubMedGoogle Scholar
  11. Jian D, Mao N, Liu J, Hu X, Ma L, Deng ZL, Wang DZ (2016) Trbp is required for differentiation of myoblasts and normal regeneration of skeletal muscle. PLoS One 11:e0155349CrossRefGoogle Scholar
  12. Kaufman SJ, Parks CM (1977) Loss of growth control and differentiation in the fu-1 variant of the L8Line of rat myoblasts. Proc Natl Acad Sci U S A 74(9):3888–3892. CrossRefPubMedGoogle Scholar
  13. Leone G, Degregori J, Yan Z, Jakoi L, Ishida S, Williams RS, Nevins JR (1998) E2F3 activity is regulated during the cell cycle and is required for the induction of S phase. Genes Dev 12(14):2120–2130. CrossRefPubMedGoogle Scholar
  14. Liu J, Liang X, Zhou D, Lai L, Xiao L, Liu L, Fu T, Kong Y, Zhou Q, Vega RB (2016) Coupling of mitochondrial function and skeletal muscle fiber type by a miR-499/Fnip1/AMPK circuit. EMBO Mol Med 8(10):1212–1228. CrossRefPubMedGoogle Scholar
  15. Montarras D, Chelly J, Bober E, Arnold H, Ott MO, Gros F, Pinset C (1991) Developmental patterns in the expression of Myf5, MyoD, myogenin, and MRF4 during myogenesis. New Biol 3:592PubMedGoogle Scholar
  16. Nielsen M, Hansen JH, Hedegaard J, Nielsen RO, Panitz F, Bendixen C, Thomsen B (2010) MicroRNA identity and abundance in porcine skeletal muscles determined by deep sequencing. Anim Genet 41(2):159–168. CrossRefPubMedGoogle Scholar
  17. Pette D, Staron RS (2000) Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech 50(6):500–509.<500::AID-JEMT7>3.0.CO;2-7 CrossRefPubMedGoogle Scholar
  18. Qiu H, Liu N, Luo L, Zhong J, Tang Z, Kang K, Qu J, Peng W, Liu L, Li L (2016) MicroRNA-17-92 regulates myoblast proliferation and differentiation by targeting the ENH1/Id1 signaling axis. Cell Death Differ 23(10):1658–1669. CrossRefPubMedGoogle Scholar
  19. Reynolds LJ, Credeur DP, Manrique C, Padilla J, Fadel PJ, Thyfault JP (2016) Obesity, type 2 diabetes, and impaired insulin stimulated blood flow: role of skeletal muscle NO synthase and endothelin-1. J Appl Physiol 122(1):38–47CrossRefPubMedGoogle Scholar
  20. Sabourin LA, Rudnicki MA (2000) The molecular regulation of myogenesis. Clin Genet 57(1):16–25CrossRefPubMedGoogle Scholar
  21. Scott LJ, Erdos MR, Huyghe JR, Welch RP, Beck AT, Wolford BN, Chines PS, Didion JP, Narisu N, Stringham HM (2016) The genetic regulatory signature of type 2 diabetes in human skeletal muscle. Nat Commun 7:11764. CrossRefPubMedGoogle Scholar
  22. Shen L, Chen L, Zhang S, Zhang Y, Wang J, Zhu L (2016a) MicroRNA-23a reduces slow myosin heavy chain isoforms composition through myocyte enhancer factor 2C (MEF2C) and potentially influences meat quality. Meat Sci 116:201–206. CrossRefPubMedGoogle Scholar
  23. Shen L, Du J, Xia Y, Tan Z, Fu Y, Yang Q, Li X, Tang G, Jiang Y, Wang J (2016b) Genome-wide landscape of DNA methylomes and their relationship with mRNA and miRNA transcriptomes in oxidative and glycolytic skeletal muscles. Sci Rep 6(1):32186. CrossRefPubMedGoogle Scholar
  24. Shi L, Zhou B, Li P, Schinckel AP, Liang T, Wang H, Li H, Fu L, Chu Q, Huang R (2015) MicroRNA-128 targets myostatin at coding domain sequence to regulate myoblasts in skeletal muscle development. Cell Signal 27(9):1895–1904. CrossRefPubMedGoogle Scholar
  25. Zhang J, Ying Z, Tang Z, Long L, Li K (2012) MicroRNA-148a promotes myogenic differentiation by targeting the ROCK1 gene. J Biol Chem 287(25):21093–21101. CrossRefPubMedGoogle Scholar
  26. Zhang WR, Zhang HN, Wang YM, Dai Y, Liu XF, Li X, Ding XB, Guo H (2017) miR-143 regulates proliferation and differentiation of bovine skeletal muscle satellite cells by targeting IGFBP5. Vitro Cellular Developmental Biology Animal 53(1):1–7. CrossRefGoogle Scholar
  27. Zuo B (2015) FHL3 differentially regulates expression of four MyHC isoforms through interaction with MyoD and CREB. Plant & Animal Genome,Google Scholar

Copyright information

© The Society for In Vitro Biology 2018

Authors and Affiliations

  1. 1.College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
  2. 2.Sichuan Province General Station of Animal HusbandryChengduChina
  3. 3.College of Life and ScienceSichuan Agricultural UniversityChengduChina
  4. 4.Chongqing Academy of Animal SciencesChongqingChina

Personalised recommendations