Skip to main content
Log in

Best practices for detecting and mitigating the risk of cell culture contaminants

  • Review
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

A variety of biological and chemical contaminants can adversely impact cells in culture, ranging from outright destruction of the culture, mutation, phenotypic changes to relatively minor changes in morphology, or growth rate. There are various approaches to detecting and mitigating the risk of biological or microbial contaminants in cell cultures, and these are discussed in this article. Chemical contaminants typically arise from improper handling or sourcing of cell culture reagents, glassware, or other types of consumables. These and other sources of chemical contaminants of cell cultures are discussed. The occurrence of chemical contamination is mitigated through adherence to best practices in sourcing and handling of such materials and by avoiding the use of volatile solvents within incubators that are used for maintaining cell cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Armstrong SE, Mariano JA, Lundin DJ (2010) The scope of mycoplasma contamination within the biopharmaceutical industry. Biologicals 38:211–213

    Article  CAS  PubMed  Google Scholar 

  • Baust JM, Buehring GC, Campbell L, Elmore E, Harbell JW, Nims RW, Price P, Reid Y, Simione F (2017) Best practices in cell culture: an overview. In Vitro Cell Dev Biol Anim 53:669–672

    Article  CAS  PubMed  Google Scholar 

  • Beary SJ, Walczak EM (1983) Cytopathic effect of whole cells and purified membranes of Mycoplasma hyopneumoniae. Infect Immunol 41:132–136

    Google Scholar 

  • Bertram JS (1979) Reduction in the formation of carcinogen-induced transformed foci by penicillin G sodium in the C3H/10T1/2 CL8 cell line. Cancer Lett 7:289–298

    Article  CAS  PubMed  Google Scholar 

  • Buehring GC, Pan C-Y, Valesco M (1995) Cell culture contamination by mycobacteria. In Vitro Cell Dev Biol Anim 31:735–737

    Article  CAS  PubMed  Google Scholar 

  • Butash KA, Natarajan P, Young A, Fox DK (2000) Reexamination of the effect of endotoxin on cell proliferation and transfection efficiency. BioTechniques 29:610–619

    CAS  PubMed  Google Scholar 

  • Chen TR (1977) In situ detection of mycoplasma contamination in cell culture by fluorescent Hoechst 33258 strain. Exp Cell Res 104:255–262

    Article  CAS  PubMed  Google Scholar 

  • Coecke S, Balls M, Bowe G, Davis J, Gstraunthaler G, Hartung T, Hay R, Merten OW, Price A, Schechtman L, Stacey G, Stokes W (2005) Guidance on good cell culture practice. A report of the second ECVAM task force on good cell culture practice. Altern Lab Anim 33:261–287

    CAS  PubMed  Google Scholar 

  • Epstein J, Lee MM, Kelly CE, Donahoe PK (1990) Effect of E. coli endotoxin on mammalian cell growth and recombinant protein production. In Vitro Cell Dev Biol 26:1121–1122

    Article  CAS  PubMed  Google Scholar 

  • Hartung T, Balls M, Bardouille C, Blank O, Coecke S, Gstraunthaler G, Lewis D (2002) Good cell culture practice. ECVAM good cell culture practice task force report 1. ATLA 30:407–414

    CAS  PubMed  Google Scholar 

  • Hay RJ (1992) Methods for authenticating cell lines. Dev Biol Stand 76:25–37

    CAS  PubMed  Google Scholar 

  • Izumi M, Miyazawa H, Kamakura T, Yamaguchi I, Endo T, Hanaoka F (1991) Blasticidin S-resistance gene (bsr): a novel selectable marker for mammalian cells. Exp Cell Res 197:229–233

    Article  CAS  PubMed  Google Scholar 

  • Lelong-Rebel IH, Piemont Y, Fabre M, Rebel G (2009) Mycobacterium avium-intracellulare contamination of mammalian cell cultures. In Vitro Dev Biol Anim 45:75–90

    Article  CAS  Google Scholar 

  • Macy ML (1979) Tests for mycoplasma contamination of cultured cells as applied at the ATCC. TCA Manual 5:1151–1156

    Article  Google Scholar 

  • Nie Y, Cui D, Pan Z, Deng J, Huang Q, Wu K (2008) HSV-1 infection suppresses TGF-β1 and SMAD3 expression in human corneal epithelial cells. Mol Vis 14:1631–1638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nims R, Chun A, Marino A, Dieringer-Boyer S (2011) Nontuberculosis mycobacterium contamination of a mammalian cell bioreactor process for biologics manufacture. BioPharm Int 24:30–34

    CAS  Google Scholar 

  • Pamies D, Bal-Price A, Simeonov A, Tagle D, Allen D, Gerhold D, Yin D, Pistollato F, Inutsuka T, Sullivan K, Stacey G, Salem H, Leist M, Daneshian M, Vemuri MC, McFarland R, Coecke S, Fitzpatrick SC, Lakshmipathy U, Mack A, Wang WB, Yamazaki D, Sekino Y, Kanda Y, Smirnova L, Hartung T (2017) Good cell culture practice for stem cells and stem-cell-derived models. ALTEX 34:95–132

    PubMed  Google Scholar 

  • Price PJ (2017) Best practices for media selection for mammalian cells. In Vitro Dev Biol Anim 53:673–681

    Article  CAS  Google Scholar 

  • Reid YA (2017) Best practices for naming, receiving and managing cells in culture. In Vitro Dev Biol Anim (in press)

  • Ryan J (2008) Endotoxins and cell culture. Corning Technical Bulletin 305 http://www.level.com.tw/html/ezcatfiles/vipweb20/img/img/20297/cc_endotoxins_tc_305_rev1.pdf

  • Taylor-Robinson D, Bébéar C (1997) Antibiotic susceptibilities of mycoplasmas and treatment of mycoplasmal infections. J Antimicrob Chemother 40:622–630

    Article  CAS  PubMed  Google Scholar 

  • Unger C, Skottman H, Blomberg P, Dilber MS, Hovatta O (2008) Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum Mol Genet 17(R1):R48–R53

    Article  CAS  PubMed  Google Scholar 

  • United States FDA (1993) Points to consider in the characterization of cell lines used to produce biologicals. CBER

  • United States FDA (2010) Guidance for industry. Characterization and qualification of cell substrates and other biological materials used in the production of viral vaccines for infectious disease indications. CBER

  • United States Pharmacopeia <1237> (2017) Virology Test Methods

Download references

Acknowledgements

The authors acknowledge the input and expert review of the following members of the Best Practices in Cell Culture Workgroup: John M. Baust, Gertrude Case Buehring, Lia H. Campbell, Eugene Elmore, John W. Harbell, Yvonne Reid, and Frank Simione.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond W. Nims.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nims, R.W., Price, P.J. Best practices for detecting and mitigating the risk of cell culture contaminants. In Vitro Cell.Dev.Biol.-Animal 53, 872–879 (2017). https://doi.org/10.1007/s11626-017-0203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-017-0203-9

Keywords

Navigation