Skip to main content
Log in

Mitochondrial phosphatase PGAM5 regulates Keap1-mediated Bcl-xL degradation and controls cardiomyocyte apoptosis driven by myocardial ischemia/reperfusion injury

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Phosphoglycerate mutase 5 (PGAM5) is a mitochondrial membrane protein that plays crucial roles in necroptosis and apoptosis. Though PGAM5 is known to be required for inducing intrinsic apoptosis through interacting with BCL2 associated X protein (Bax) and dynamin-related protein 1 (Drp1), the expression and role of PGAM5 in cardiomyocyte apoptosis driven by myocardial ischemia/reperfusion injury(MIRI) has not been studied. The present study shows that PGAM5 expression decreased after MIRI in vivo, positively correlated with Bcl-xL expression, negatively correlated with Kelch-ECH associating protein 1 (Keap1) expression. Furthermore, PGAM5 expression also decreased in cardiomyocytes after hypoxia/reoxygenation (H/R) treatment in vitro. PGAM5 silence promoted cardiomyocyte apoptosis and inhibited Bcl-xL expression, but with no effect on Keap1 expression. Accordingly, Keap1 overexpression further inhibited Bcl-xL and PGAM5 expression. Additionally, PGAM5-Bcl-xL-Keap1 interaction was identified, suggesting that PGAM5 might participate in the degradation of Bcl-xL mediated by Keap1. In summary, PGAM5 controls cardiomyocyte apoptosis induced by MIRI through regulating Keap1-mediated Bcl-xL degradation, which may supply a novel molecular target for acute myocardial infarction (AMI) therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Abbate A, Biondi-Zoccai GG, Baldi A (2002) Pathophysiologic role of myocardial apoptosis in post-infarction left ventricular remodeling. J Cell Physiol 193(2):145–153

    Article  CAS  PubMed  Google Scholar 

  • Aravind L, Dixit VM, Koonin EV (2001) Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genome comparisons. Science 291(5507):1279–1284

    Article  CAS  PubMed  Google Scholar 

  • Bagai A, Dangas GD, Stone GW, Granger CB (2014) Reperfusion strategies in acute coronary syndromes. Circ Res 114(12):1918–1928

    Article  CAS  PubMed  Google Scholar 

  • Boise LH, González-García M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nuñez G, Thompson CB (1993) bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74(4):597–608

    Article  CAS  PubMed  Google Scholar 

  • Carvajal K, El Hafidi M, Banos G (1999) Myocardial damage due to ischemia and reperfusion in hypertriglyceridemic and hypertensive rats: participation of free radicals and calcium overload. J Hypertens 17(11):1607–1616

    Article  CAS  PubMed  Google Scholar 

  • Chao DT, Korsmeyer SJ (1998) BCL-2 family: regulators of cell death. Annu Rev Immunol 16:395–419

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Han Z, Feng D, Chen Y, Chen L, Wu H, Huang L, Zhou C, Cai X, Fu C, Duan L, Wang X, Liu L, Liu X, Shen Y, Zhu Y, Chen Q (2014) A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol Cell 54(3):362–377

    Article  CAS  PubMed  Google Scholar 

  • Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219

    Article  CAS  PubMed  Google Scholar 

  • Fan GC, Ren X, Qian J, Yuan Q, Nicolaou P, Wang Y, Jones WK, Chu G, Kranias EG (2005) Novel cardioprotective role of a small heat-shock protein, Hsp20, against ischemia/reperfusion injury. Circulation 111(14):1792–1799

    Article  CAS  PubMed  Google Scholar 

  • Fan Q, Chen L, Cheng S, Li F, Lau WB, Wang LF, Liu JH (2014) Aging aggravates nitrate-mediated ROS/RNS changes. Oxidative Med Cell Longev 2014:376515

    Google Scholar 

  • Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94(4):1621–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida Y, Sekine Y, Oguchi H, Chihara T, Miura M, Ichijo H, Takeda K (2012) Prevention of apoptosis by mitochondrial phosphatase PGAM5 in the mushroom body is crucial for heat shock resistance in Drosophila melanogaster. PLoS One 7(2):e30265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jennings RB (2013) Historical perspective on the pathology of myocardial ischemia/reperfusion injury. Circ Res 113(4):428–438

    Article  CAS  PubMed  Google Scholar 

  • Kang YJ, Bang BR, Han KH, Hong L, Shim E-J, Ma J, Lerner RA, Otsuka M (2015) Regulation of NKT cell-mediated immune responses to tumours and liver inflammation by mitochondrial PGAM5-Drp1 signalling. Nat Commun 6:8371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DF, Kuo HP, Liu M, Chou CK, Xia W, Du Y, Shen J, Chen CT, Huo L, Hsu MC, Li CW, Ding Q, Liao TL, Lai CC, Lin AC, Chang YH, Tsai SF, Li LY, Hung MC (2009) KEAP1 E3 ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta. Mol Cell 36(1):131–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Xie C, Zhuang J, Li H, Yao Y, Shao C, Wang H (2015) Resveratrol attenuates inflammation in the rat heart subjected to ischemia-reperfusion: role of the TLR4/NF-kappaB signaling pathway. Mol Med Rep 11(2):1120–1126

    CAS  PubMed  Google Scholar 

  • Lim SH, Kim MY, Lee J (2014) Apple pectin, a dietary fiber, ameliorates myocardial injury by inhibiting apoptosis in a rat model of ischemia/reperfusion. Nutr Res Pract 8(4):391–397

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin HY, Lai RH, Lin ST, Lin RC, Wang MJ, Lin CC, Lee HC, Wang FF, Chen JY (2013) Suppressor of cytokine signaling 6 (SOCS6) promotes mitochondrial fission via regulating DRP1 translocation. Cell Death Differ 20(1):139–153

    Article  CAS  PubMed  Google Scholar 

  • Lo SC, Hannink M (2006) PGAM5, a Bcl-XL-interacting protein, is a novel substrate for the redox-regulated Keap1-dependent ubiquitin ligase complex. J Biol Chem 281(49):37893–37903

    Article  CAS  PubMed  Google Scholar 

  • Lo SC, Hannink M (2008) PGAM5 tethers a ternary complex containing Keap1 and Nrf2 to mitochondria. Exp Cell Res 314(8):1789–1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W, Karuppagounder SS, Springer DA, Allen MD, Zheng L, Chao B, Zhang Y, Dawson VL, Dawson TM, Lenardo M (2014) Genetic deficiency of the mitochondrial protein PGAM5 causes a Parkinson's-like movement disorder. Nat Commun 5:4930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W, Sun J, Yoon JS, Zhang Y, Zheng L, Murphy E, Mattson MP, Lenardo MJ (2016) Mitochondrial protein PGAM5 regulates mitophagic protection against cell necroptosis. PLoS One 11(1):e0147792

    Article  PubMed  PubMed Central  Google Scholar 

  • Luthra S, Leiva-Juarez MM, Taggart DP (2015) Systematic review of therapies for stable coronary artery disease in diabetic patients. Ann Thorac Surg 100(6):2383–2397

    Article  PubMed  Google Scholar 

  • Moriwaki K, Farias Luz N, Balaji S, De Rosa MJ, O'Donnell CL, Gough PJ, Bertin J, Welsh RM, Chan FK (2016) The mitochondrial phosphatase PGAM5 is dispensable for necroptosis but promotes inflammasome activation in macrophages. J Immunol 196(1):407–415

    Article  CAS  PubMed  Google Scholar 

  • Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang J-G, Alvarez-Diaz S, Lewis R, Lalaoui N, Metcalf D, Webb AI, Young SN, Varghese LN, Tannahill GM, Hatchell EC, Majewski IJ, Okamoto T, Dobson RCJ, Hilton DJ, Babon JJ, Nicola NA, Strasser A, Silke J, Alexander WS (2013) The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39(3):443–453

    Article  CAS  PubMed  Google Scholar 

  • Niture SK, Jaiswal AK (2011a) Inhibitor of Nrf2 (INrf2 or Keap1) protein degrades Bcl-xL via phosphoglycerate mutase 5 and controls cellular apoptosis. J Biol Chem 286(52):44542–44556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niture SK, Jaiswal AK (2011b) INrf2 (Keap1) targets Bcl-2 degradation and controls cellular apoptosis. Cell Death Differ 18(3):439–451

    Article  CAS  PubMed  Google Scholar 

  • Niture SK, Kaspar JW, Shen J, Jaiswal AK (2010) Nrf2 signaling and cell survival. Toxicol Appl Pharmacol 244(1):37–42

    Article  CAS  PubMed  Google Scholar 

  • Olivetti G, Quaini F, Sala R, Lagrasta C, Corradi D, Bonacina E, Gambert SR, Cigola E, Anversa P (1996) Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol 28(9):2005–2016

    Article  CAS  PubMed  Google Scholar 

  • Pagliaro P, Penna C (2015) Redox signalling and cardioprotection: translatability and mechanism. Br J Pharmacol 172(8):1974–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei YH, Chen J, Xie L, Cai X-M, Yang R-H, Wang X, Gong J-B (2016) Hydroxytyrosol protects against myocardial ischemia/reperfusion injury through a PI3K/Akt-dependent mechanism. Mediat Inflamm 2016:1232103

    Article  Google Scholar 

  • Qian L, Shi J, Zhang C, Lu J, Lu X, Wu K, Yang C, Yan D, Zhang C, You Q, Liu X (2015) Downregulation of RACK1 is associated with cardiomyocyte apoptosis after myocardial ischemia/reperfusion injury in adult rats. In Vitro Cell Dev Biol Anim

  • Ren H, Fu K, Wang D, Mu C, Wang G (2011) Oxidized DJ-1 interacts with the mitochondrial protein BCL-XL. J Biol Chem 286(40):35308–35317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, Hailpern SM, Ho M, Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C, Nichol G, O'Donnell C, Roger V, Sorlie P, Steinberger J, Thom T, Wilson M, Hong Y, American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2008) Heart disease and stroke statistics--2008 update: a report from the American heart association statistics committee and stroke statistics subcommittee. Circulation 117(4):e25–e146

    Article  PubMed  Google Scholar 

  • Takemura G, Fujiwara H (2004) Role of apoptosis in remodeling after myocardial infarction. Pharmacol Ther 104(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhu H, Zhang X, Liu Y, Chen J, Medvedovic M, Li H, Weiss MJ, Ren X, Fan GC (2012a) Loss of the miR-144/451 cluster impairs ischaemic preconditioning-mediated cardioprotection by targeting Rac-1. Cardiovasc Res 94(2):379–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Jiang H, Chen S, Du F, Wang X (2012b) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148(1–2):228–243

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yang S, Ni Q, He S, Zhao Y, Yuan Q, Li C, Chen H, Zhang L, Zou L, Shen A, Cheng C (2012c) Overexpression of forkhead box J2 can decrease the migration of breast cancer cells. J Cell Biochem 113(8):2729–2737

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Liu F, Mao F, Hang Q, Huang X, He S, Wang Y, Cheng C, Wang H, Xu G, Zhang T, Shen A (2013) Interaction with cyclin H/cyclin-dependent kinase 7 (CCNH/CDK7) stabilizes C-terminal binding protein 2 (CtBP2) and promotes cancer cell migration. J Biol Chem 288(13):9028–9034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Wu H, Xue D, Chen G, Han Z, Huang L, Zhu C, Wang X, Jin H, Wang J, Zhu Y, Liu L, Chen Q (2014) The BCL2L1 and PGAM5 axis defines hypoxia-induced receptor-mediated mitophagy. Autophagy 10(10):1712–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Jing L, Wang Q, Lin CC, Chen X, Diao J, Liu Y, Sun X (2015) Bax-PGAM5L-Drp1 complex is required for intrinsic apoptosis execution. Oncotarget 6(30):30017–30034

    PubMed  PubMed Central  Google Scholar 

  • Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9(1):47–59

    Article  CAS  PubMed  Google Scholar 

  • Zhao ZQ, Nakamura M, Wang NP, Wilcox JN, Shearer S, Ronson RS (2000) Reperfusion induces myocardial apoptotic cell death. Cardiovasc Res 45(3):651–660

    Article  CAS  PubMed  Google Scholar 

  • Zhuang M, Guan S, Wang H, Burlingame AL, Wells JA (2013) Substrates of IAP ubiquitin ligases identified with a designed orthogonal E3 ligase, the NEDDylator. Mol Cell 49(2):273–282

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (Nos. 81202368, 31270802, 81401365); Nantong science and technology project (MS12015056); a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingsheng You or Xiang Wu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Editor: Tetsuji Okamoto

Chen Yang, Xiaojuan Liu, Qingsheng You, and Xiang Wu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Liu, X., Yang, F. et al. Mitochondrial phosphatase PGAM5 regulates Keap1-mediated Bcl-xL degradation and controls cardiomyocyte apoptosis driven by myocardial ischemia/reperfusion injury. In Vitro Cell.Dev.Biol.-Animal 53, 248–257 (2017). https://doi.org/10.1007/s11626-016-0105-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-016-0105-2

Keywords

Navigation