Skip to main content
Log in

Potential efficacy of Lactobacillus casei IBRC_M10711 on expression and activity of insulin degrading enzyme but not insulin degradation

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Type 2 diabetes (T2D) is a condition with insufficient insulin production or in the setting of insulin resistance with many origins including intestinal microbiota-related molecular mechanism. Insulin-degrading enzyme (IDE) is responsible for insulin breakdown in various tissues and is known as a potential drug target for T2D. Here, we assessed the effects of cell-free supernatant (CFS) and UV-killed Lactobacillus casei IBRC_M10711 on IDE expression, IDE activity, and insulin degradation in Caco-2 cell line. It was found that CFS and UV-killed L. casei IBRC_M10711 led to lower expression of IDE. UV-killed L. casei IBRC_M10711 significantly inhibited IDE activity but CFS did not. Insulin degradation was affected with none of them. In conclusion, L. casei IBRC_M10711 is effective on IDE expression and its activity, but not on insulin degradation. Future studies are recommended to explore the effect of this probiotic on other substrates of IDE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Andreasen AS, Larsen N, Pedersen-Skovsgaard T, Berg RM, Møller K, Svendsen KD, Jakobsen M, Pedersen BK (2010) Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects. British Journal of Nutrition 104:1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Asemi Z, Samimi M, Tabassi Z, Rad MN, Foroushani AR, Khorammian H, Esmaillzadeh A (2013) Effect of daily consumption of probiotic yoghurt on insulin resistance in pregnant women: a randomized controlled trial. European journal of clinical nutrition 67:71–74

    Article  CAS  PubMed  Google Scholar 

  • Bai JP, Hsu MJ, Shier WT (1995) Insulin-degrading enzyme in a human colon adenocarcinoma cell line (Caco-2). Pharmaceutical research 12:513–517

    Article  CAS  PubMed  Google Scholar 

  • Brandimarti P, Costa-Júnior JM, Ferreira SM, Protzek A, Santos G, Carneiro EM, Boschero AC, Rezende LF (2013) Cafeteria diet inhibits insulin clearance by reduced insulin-degrading enzyme expression and mRNA splicing. Journal of Endocrinology 219:173–182

    Article  CAS  PubMed  Google Scholar 

  • Burcelin R, Serino M, Chabo C, Blasco-Baque V, Amar J (2011) Gut microbiota and diabetes: from pathogenesis to therapeutic perspective. Acta diabetologica 48:257–273

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabrol C, Huzarska MA, Dinolfo C, Rodriguez MC, Reinstatler L, Ni J, Yeh L-A, Cuny GD, Stein RL, Selkoe DJ (2009) Small-molecule activators of insulin-degrading enzyme discovered through high-throughput compound screening. PloS one 4:e5274

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen P, Zhang Q, Dang H, Liu X, Tian F, Zhao J, Chen Y, Zhang H, Chen W (2014) Oral administration of Lactobacillus rhamnosus CCFM0528 improves glucose tolerance and cytokine secretion in high-fat-fed, streptozotocin-induced type 2 diabetic mice. Journal of Functional Foods 10:318–326

    Article  CAS  Google Scholar 

  • Cogan T, Beresford T, Steele J, Broadbent J, Shah N, Ustunol Z (2007) Invited review: advances in starter cultures and cultured foods. Journal of Dairy Science 90:4005–4021

    Article  CAS  PubMed  Google Scholar 

  • da Cruz CH, Seabra G (2014) Molecular dynamics simulations reveal a novel mechanism for ATP inhibition of insulin degrading enzyme. Journal of chemical information and modeling 54:1380–1390

    Article  PubMed  Google Scholar 

  • Deprez-Poulain R, Hennuyer N, Bosc D, Liang WG, Enée E, Marechal X, Charton J, Totobenazara J, Berte G, Jahklal J, Verdelet T, Dumont J, Dassonneville S, Woitrain E, Gauriot M, Paquet C, Duplan I, Hermant P, Cantrelle F-X, Sevin E, Culot M, Landry V, Herledan A, Piveteau C, Lippens G, Leroux F, Tang W-J, van Endert P, Staels B, Deprez B (2015) Catalytic site inhibition of insulin-degrading enzyme by a small molecule induces glucose intolerance in mice. Nat Commun 6:8250

  • Duckworth WC, Bennett RG, Hamel FG (1998) Insulin degradation: progress and potential 1. Endocrine reviews 19:608–624

    CAS  PubMed  Google Scholar 

  • Gerritsen J, Smidt H, Rijkers GT, de Vos WM (2011) Intestinal microbiota in human health and disease: the impact of probiotics. Genes & nutrition 6:209–240

    Article  Google Scholar 

  • Gomes AC, Bueno AA, de Souza R, Mota JF (2014) Gut microbiota, probiotics and diabetes. Nutrition journal 13:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu HF, Efendic S, Nordman S, Östenson C-G, Brismar K, Brookes AJ, Prince JA (2004) Quantitative trait loci near the insulin-degrading enzyme (IDE) gene contribute to variation in plasma insulin levels. Diabetes 53:2137–2142

    Article  CAS  PubMed  Google Scholar 

  • Hamel FG, Upward JL, Bennett RG (2003) In vitro inhibition of insulin-degrading enzyme by long-chain fatty acids and their coenzyme A thioesters. Endocrinology 144:2404–2408

    Article  CAS  PubMed  Google Scholar 

  • Hulse RE, Ralat LA, Wei-Jen T (2009) Structure, function, and regulation of insulin-degrading enzyme. Vitamins & Hormones 80:635–648

    Article  CAS  Google Scholar 

  • Im H, Manolopoulou M, Malito E, Shen Y, Zhao J, Neant-Fery M, Sun C-Y, Meredith SC, Sisodia SS, Leissring MA (2007) Structure of substrate-free human insulin-degrading enzyme (IDE) and biophysical analysis of ATP-induced conformational switch of IDE. Journal of Biological Chemistry 282:25453–25463

    Article  CAS  PubMed  Google Scholar 

  • Kaur IP, Chopra K, Saini A (2002) Probiotics: potential pharmaceutical applications. European Journal of Pharmaceutical Sciences 15:1–9

    Article  CAS  PubMed  Google Scholar 

  • Lai KK, Lorca GL, Gonzalez CF (2009) Biochemical properties of two cinnamoyl esterases purified from a Lactobacillus johnsonii strain isolated from stool samples of diabetes-resistant rats. Applied and environmental microbiology 75:5018–5024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Li G, Liu H, Zhao J, Jing Y, Yang F (2012) The analysis of the impacting factors of probiotics on immune responses. African Journal of Microbiology Research 6:2735–2743

    CAS  Google Scholar 

  • Matsuzaki T, Nagata Y, Kado S, Uchida K, Kato I, Hashimoto S, Yokokura T (1997) Prevention of onset in an insulin-dependent diabetes mellitus model, NOD mice, by oral feeding of Lactobacillus casei. Apmis 105:643–649

    Article  CAS  PubMed  Google Scholar 

  • Mine T (2014) What is Probiotics? J Prob Health 2

  • Motevaseli E, Shirzad M, Raoofian R, Hasheminasab S-M, Hatami M, Dianatpour M, Modarressi M-H (2013) Differences in vaginal lactobacilli composition of Iranian healthy and bacterial vaginosis infected women: a comparative analysis of their cytotoxic effects with commercial vaginal probiotics. Iranian Red Crescent Medical Journal 15:199

    Article  PubMed  PubMed Central  Google Scholar 

  • Naito E, Yoshida Y, Makino K, Kounoshi Y, Kunihiro S, Takahashi R, Matsuzaki T, Miyazaki K, Ishikawa F (2011) Beneficial effect of oral administration of Lactobacillus casei strain Shirota on insulin resistance in diet-induced obesity mice. Journal of applied microbiology 110:650–657

    Article  CAS  PubMed  Google Scholar 

  • Naydenov K, Anastasov A, Avramova M, Mindov I, Tacheva T, Tolekova A, Vlaykova T (2012) Probiotics and diabetes mellitus. Trakia Journal of Sciences 10:300–306

    Google Scholar 

  • Neant-Fery M, Garcia-Ordoñez RD, Logan TP, Selkoe DJ, Li L, Reinstatler L, Leissring MA (2008) Molecular basis for the thiol sensitivity of insulin-degrading enzyme. Proceedings of the National Academy of Sciences 105:9582–9587

    Article  CAS  Google Scholar 

  • Panwar H, Rashmi HM, Batish VK, Grover S (2013) Probiotics as potential biotherapeutics in the management of type 2 diabetes–prospects and perspectives. Diabetes/metabolism research and reviews 29:103–112

    Article  CAS  PubMed  Google Scholar 

  • Qiu WQ, Walsh DM, Ye Z, Vekrellis K, Zhang J, Podlisny MB, Rosner MR, Safavi A, Hersh LB, Selkoe DJ (1998) Insulin-degrading enzyme regulates extracellular levels of amyloid β-protein by degradation. Journal of Biological Chemistry 273:32730–32738

    Article  CAS  PubMed  Google Scholar 

  • Raso GM, Simeoli R, Iacono A, Santoro A, Amero P, Paciello O, Russo R, D’Agostino G, Di Costanzo M, Canani RB (2014) Effects of a Lactobacillus paracasei B21060 based synbiotic on steatosis, insulin signaling and toll-like receptor expression in rats fed a high-fat diet. The Journal of nutritional biochemistry 25:81–90

    Article  PubMed  Google Scholar 

  • Retnakaran R, Drucker DJ (2008) Intensive insulin therapy in newly diagnosed type 2 diabetes. The Lancet 371:1725–1726

    Article  Google Scholar 

  • Retnakaran R, Zinman B (2012) Short-term intensified insulin treatment in type 2 diabetes: long-term effects on β-cell function. Diabetes, Obesity and Metabolism 14:161–166

    Article  CAS  PubMed  Google Scholar 

  • Rezende LF, Camargo RL, Branco R, Cappelli AP, Boschero AC, Carneiro EM (2014) Reduced insulin clearance and lower insulin-degrading enzyme expression in the liver might contribute to the thrifty phenotype of protein-restricted mice. British Journal of Nutrition 112:900–907

    Article  CAS  PubMed  Google Scholar 

  • Saric T, Müller D, Seitz H-J, Pavelic K (2003) Non-covalent interaction of ubiquitin with insulin-degrading enzyme. Molecular and cellular endocrinology 204:11–20

    Article  CAS  PubMed  Google Scholar 

  • Soltan DM, Mojarrad M, Baghbani F, Raoofian R, Mardaneh J, Salehipour Z (2015) Effects of probiotic Lactobacillus acidophilus and Lactobacillus casei on colorectal tumor cells activity (CaCo-2). Archives of Iranian medicine 18:167–172

    Google Scholar 

  • Song E-S, Juliano MA, Juliano L, Hersh LB (2003) Substrate activation of insulin-degrading enzyme (insulysin) a potential target for drug development. Journal of Biological Chemistry 278:49789–49794

    Article  CAS  PubMed  Google Scholar 

  • Steneberg P, Bernardo L, Edfalk S, Lundberg L, Backlund F, Östenson C-G, Edlund H (2013) The type 2 diabetes–associated gene Ide is required for insulin secretion and suppression of α-synuclein levels in β-cells. Diabetes 62:2004–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiptiri-Kourpeti A, Spyridopoulou K, Santarmaki V, Aindelis G, Tompoulidou E, Lamprianidou EE, Saxami G, Ypsilantis P, Lampri ES, Simopoulos C (2016) Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death andup-regulation of TRAIL in colon carcinoma cells. PloS one 11:e0147960

    Article  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett C, Knight R, Gordon JI (2007) The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature 449:804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Hoffen E, Korthagen NM, De Kivit S, Schouten B, Bardoel B, Duivelshof A, Knol J, Garssen J, Willemsen LE (2010) Exposure of intestinal epithelial cells to UV-killed Lactobacillus GG but not Bifidobacterium breve enhances the effector immune response in vitro. International archives of allergy and immunology 152:159–168

    Article  CAS  PubMed  Google Scholar 

  • Wajchenberg BL (2013) β-cell failure in diabetes and preservation by clinical treatment. Endocr Rev 28(2):187–218

  • Wei X, Ke B, Zhao Z, Ye X, Gao Z, Ye J (2014) Regulation of insulin degrading enzyme activity by obesity-associated factors and pioglitazone in liver of diet-induced obese mice. PloS one 9:e95399

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei S-H, Chen Y-P, Chen M-J (2015) Selecting probiotics with the abilities of enhancing GLP-1 to mitigate the progression of type 1 diabetes in vitro and in vivo. Journal of Functional Foods 18:473–486

    Article  CAS  Google Scholar 

  • Zeuthen LH, Fink LN, Frokiaer H (2008) Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor-β. Immunology 123:197–208

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research study is funded by the Tehran University of Medical Sciences, International Campus (TUMS-IC). The authors thank the staffs of Pharmacology and Toxicology laboratory, Faculty of Pharmacy, for their collaborations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elahe Motevaseli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neyazi, N., Mohammadi Farsani, T., Nouri, Z. et al. Potential efficacy of Lactobacillus casei IBRC_M10711 on expression and activity of insulin degrading enzyme but not insulin degradation. In Vitro Cell.Dev.Biol.-Animal 53, 12–19 (2017). https://doi.org/10.1007/s11626-016-0083-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-016-0083-4

Keywords

Navigation