Skip to main content

Hox6 genes modulate in vitro differentiation of mESCs to insulin-producing cells


The differentiation of glucose-responsive, insulin-producing cells from ESCs in vitro is promising as a cellular therapy for the treatment of diabetes, a devastating and common disease. Pancreatic β-cells are derived from the endoderm in vivo and therefore most current protocols attempt to generate a pure population of first endoderm, then pancreas epithelium, and finally insulin-producing cells. Despite this, differentiation protocols result in mixed populations of cells that are often poorly defined, but also contain mesoderm. Using an in vitro mESC-to-β cell differentiation protocol, we show that expression of region-specific Hox genes is induced. We also show that the loss of function of the Hox6 paralogous group, genes expressed only in the mesenchyme of the pancreas (not epithelium), affect the differentiation of insulin-producing cells in vitro. This work is consistent with the important role for these mesoderm-specific factors in vivo and highlights contribution of supporting mesenchymal cells in in vitro differentiation.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5


  • Abdelalim EM, Emara MM (2015) Advances and challenges in the differentiation of pluripotent stem cells into pancreatic beta cells. World J Stem Cells 7(1):174–81. doi:10.4252/wjsc.v7.i1.174

    PubMed  PubMed Central  Article  Google Scholar 

  • Ang SL, Rossant J (1994) HNF-3 beta is essential for node and notochord formation in mouse development. Cell 78(4):561–74

    CAS  PubMed  Article  Google Scholar 

  • Attali M, Stetsyuk V, Basmaciogullari A, Aiello V, Zanta-Boussif MA, Duvillie B et al (2007) Control of beta-cell differentiation by the pancreatic mesenchyme. Diabetes 56(5):1248–58. doi:10.2337/db06-1307

    CAS  PubMed  Article  Google Scholar 

  • Bhushan A, Itoh N, Kato S, Thiery JP, Czernichow P, Bellusci S et al (2001) Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Dev (Cambridge, England) 128(24):5109–17

    CAS  Google Scholar 

  • D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG et al (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24(11):1392–401. doi:10.1038/nbt1259

    PubMed  Article  Google Scholar 

  • Dressler GR, Gruss P (1989) Anterior boundaries of Hox gene expression in mesoderm-derived structures correlate with the linear gene order along the chromosome. Differ Res Biol Divers 41(3):193–201

    CAS  Article  Google Scholar 

  • Duboule D, Dolle P (1989) The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J 8(5):1497–505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Gasca A, Spyropoulos DD (2000) Differential mammary morphogenesis along the anteroposterior axis in Hoxc6 gene targeted mice. Dev Dyn: Off Publ Am Assoc Anat 219(2):261–76. doi:10.1002/1097-0177(2000)9999:9999<::AID-DVDY1048>3.0.CO;2-3

    CAS  Article  Google Scholar 

  • Gittes GK (2009) Developmental biology of the pancreas: a comprehensive review. Dev Biol 326(1):4–35. doi:10.1016/j.ydbio.2008.10.024

    CAS  PubMed  Article  Google Scholar 

  • Gittes GK, Galante PE, Hanahan D, Rutter WJ, Debase HT (1996) Lineage-specific morphogenesis in the developing pancreas: role of mesenchymal factors. Dev (Cambridge, England) 122(2):439–47

    CAS  Google Scholar 

  • Golosow N, Grobstein C (1962) Epitheliomesenchymal interaction in pancreatic morphogenesis. Dev Biol 4:242–55

    CAS  PubMed  Article  Google Scholar 

  • Graham A, Papalopulu N, Krumlauf R (1989) The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 57(3):367–78

    CAS  PubMed  Article  Google Scholar 

  • Kanai-Azuma M, Kanai Y, Gad JM, Tajima Y, Taya C, Kurohmaru M et al (2002) Depletion of definitive gut endoderm in Sox17-null mutant mice. Dev (Cambridge, England) 129(10):2367–79

    CAS  Google Scholar 

  • Kimura S, Hara Y, Pineau T, Fernandez-Salguero P, Fox CH, Ward JM et al (1996) The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 10(1):60–9

    CAS  PubMed  Article  Google Scholar 

  • Kostic D, Capecchi MR (1994) Targeted disruptions of the murine Hoxa-4 and Hoxa-6 genes result in homeotic transformations of components of the vertebral column. Mech Dev 46(3):231–47

    CAS  PubMed  Article  Google Scholar 

  • Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S et al (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26(4):443–52. doi:10.1038/nbt1393

    CAS  PubMed  Article  Google Scholar 

  • Lammert E, Cleaver O, Melton D (2001) Induction of pancreatic differentiation by signals from blood vessels. Sci (New York, NY) 294(5542):564–7. doi:10.1126/science.1064344

    CAS  Article  Google Scholar 

  • Landsman L, Nijagal A, Whitchurch TJ, Vanderlaan RL, Zimmer WE, Mackenzie TC et al (2011) Pancreatic mesenchyme regulates epithelial organogenesis throughout development. PLoS Biol 9(9):e1001143. doi:10.1371/journal.pbio.1001143

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Larsen BM, Hrycaj SM, Newman M, Li Y, Wellik DM (2015) Mesenchymal Hox6 function is required for mouse pancreatic endocrine cell differentiation. Dev (Cambridge, England) 142(22):3859–68. doi:10.1242/dev.126888

    CAS  Article  Google Scholar 

  • Martin M, Gallego-Llamas J, Ribes V, Kedinger M, Niederreither K, Chambon P et al (2005) Dorsal pancreas agenesis in retinoic acid-deficient Raldh2 mutant mice. Dev Biol 284(2):399–411. doi:10.1016/j.ydbio.2005.05.035

    CAS  PubMed  Article  Google Scholar 

  • McIntyre DC, Rakshit S, Yallowitz AR, Loken L, Jeannotte L, Capecchi MR et al (2007) Hox patterning of the vertebrate rib cage. Dev (Cambridge, England) 134(16):2981–9. doi:10.1242/dev.007567

    CAS  Article  Google Scholar 

  • Miralles F, Czernichow P, Scharfmann R (1998) Follistatin regulates the relative proportions of endocrine versus exocrine tissue during pancreatic development. Dev (Cambridge, England) 125(6):1017–24

    CAS  Google Scholar 

  • Molotkov A, Molotkova N, Duester G (2005) Retinoic acid generated by Raldh2 in mesoderm is required for mouse dorsal endodermal pancreas development. Dev Dyn: Off Publ Am Assoc Anat 232(4):950–7. doi:10.1002/dvdy.20256

    CAS  Article  Google Scholar 

  • Nostro MC, Sarangi F, Ogawa S, Holtzinger A, Corneo B, Li X et al (2011) Stage-specific signaling through TGFbeta family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Dev (Cambridge, England) 138(5):861–71. doi:10.1242/dev.055236

    CAS  Article  Google Scholar 

  • Pagliuca FW, Melton DA (2013) How to make a functional beta-cell. Dev (Cambridge, England) 140(12):2472–83. doi:10.1242/dev.093187

    CAS  Article  Google Scholar 

  • Pagliuca FW, Millman JR, Gurtler M, Segel M, Van Dervort A, Ryu JH et al (2014) Generation of functional human pancreatic beta cells in vitro. Cell 159(2):428–39. doi:10.1016/j.cell.2014.09.040

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Plachov D, Chowdhury K, Walther C, Simon D, Guenet JL, Gruss P (1990) Pax8, a murine paired box gene expressed in the developing excretory system and thyroid gland. Dev (Cambridge, England) 110(2):643–51

    CAS  Google Scholar 

  • Puri S, Hebrok M (2010) Cellular plasticity within the pancreas—lessons learned from development. Dev Cell 18(3):342–56. doi:10.1016/j.devcel.2010.02.005

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Purpura KA, Morin J, Zandstra PW (2008) Analysis of the temporal and concentration-dependent effects of BMP-4, VEGF, and TPO on development of embryonic stem cell-derived mesoderm and blood progenitors in a defined, serum-free media. Exp Hematol 36(9):1186–98. doi:10.1016/j.exphem.2008.04.003

    CAS  PubMed  Article  Google Scholar 

  • Rancourt DE, Tsuzuki T, Capecchi MR (1995) Genetic interaction between hoxb-5 and hoxb-6 is revealed by nonallelic noncomplementation. Genes Dev 9(1):108–22

    CAS  PubMed  Article  Google Scholar 

  • Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A et al (2014) Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 32(11):1121–33. doi:10.1038/nbt.3033

    CAS  PubMed  Article  Google Scholar 

  • Russ HA, Parent AV, Ringler JJ, Hennings TG, Nair GG, Shveygert M et al (2015) Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J 34(13):1759–72. doi:10.15252/embj.201591058

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Sakurai H, Inami Y, Tamamura Y, Yoshikai T, Sehara-Fujisawa A, Isobe K (2009) Bidirectional induction toward paraxial mesodermal derivatives from mouse ES cells in chemically defined medium. Stem Cell Res 3(2–3):157–69. doi:10.1016/j.scr.2009.08.002

    CAS  PubMed  Article  Google Scholar 

  • Silberg DG, Swain GP, Suh ER, Traber PG (2000) Cdx1 and cdx2 expression during intestinal development. Gastroenterology 119(4):961–71

    CAS  PubMed  Article  Google Scholar 

  • Sneddon JB, Borowiak M, Melton DA (2012) Self-renewal of embryonic-stem-cell-derived progenitors by organ-matched mesenchyme. Nature 491(7426):765–8. doi:10.1038/nature11463

    CAS  PubMed  Google Scholar 

  • Stafford D, Prince VE (2002) Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development. Curr Biol 12(14):1215–20

    CAS  PubMed  Article  Google Scholar 

  • Weinstein DC, Ruiz i Altaba A, Chen WS, Hoodless P, Prezioso VR, Jessell TM et al (1994) The winged-helix transcription factor HNF-3 beta is required for notochord development in the mouse embryo. Cell 78(4):575–88

    CAS  PubMed  Article  Google Scholar 

  • Wessells NK, Cohen JH (1967) Early pancreas organogenesis: morphogenesis, tissue interactions, and mass effects. Dev Biol 15(3):237–70

    CAS  PubMed  Article  Google Scholar 

Download references


We would like to thank Dr. Thom Saunders, Elizabeth Hughes, and the University of Michigan Transgenic Animal Model Core for help deriving the mESC lines. The NIH Cellular and Molecular Biology Training Grant T32-GM007315 and the Training Program in Organogenesis T32-HD007505 supported BML. The project described was supported by Grant Number P30DK020572 (MDRC) from the National Institute of Diabetes and Digestive and Kidney Diseases, The American Diabetes Association ADA-7-13-BS-184 and by the National Heart, Lung, and Blood Institute (NHLBI) R01-HL119215.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Deneen M. Wellik.

Additional information

Editor: Tetsuji Okamoto

Electronic Supplementary Material

Below is the link to the electronic supplementary material.


(PDF 167 kb)


(PDF 193 kb)


(PDF 273 kb)


(DOCX 28 kb)


(DOCX 26 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Larsen, B.M., Marty-Santos, L., Newman, M. et al. Hox6 genes modulate in vitro differentiation of mESCs to insulin-producing cells. In Vitro Cell.Dev.Biol.-Animal 52, 974–982 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Hox genes
  • Pancreas development
  • Endocrine cells
  • Insulin-producing cells
  • In vitro ESC differentiation