MicroRNA-764-3p regulates 17β-estradiol synthesis of mouse ovarian granulosa cells by targeting steroidogenic factor-1

  • Lianlian Wang
  • Cong Li
  • Rong Li
  • Youlin Deng
  • Yixin Tan
  • Chao Tong
  • Hongbo QiEmail author


Previous studies have reported that microRNA-764-3p (miR-764-3p) is one of the most up-regulated microRNAs (miRNAs) in TGF-β1-stimulated mouse ovarian granulosa cells. However, little is known about the roles and mechanisms of miR-764-3p in granulosa cell function during follicular development. In this study, we found that overexpression of miR-764-3p inhibited 17β-estradiol (E2) synthesis of granulosa cells through directly targeting steroidogenic factor-1 (SF-1). MiR-764-3p inhibited SF-1 by affecting its messenger RNA (mRNA) stability, which subsequently suppressed the expression levels of Cyp19a1 gene (aromatase, a downstream target of SF-1). In addition, SF-1 was involved in regulation of miR-764-3p-mediated Cyp19a1 expression in granulosa cells which contributed, at least partially, to the effects of miR-764-3p on granulosa cell E2 release. These results suggest that miR-764-3p functions to decrease steroidogenesis by targeting SF-1, at least in part, through inactivation of Cyp19a1. Taken together, our data provide mechanistic insights into the roles of miR-764-3p on E2 synthesis. Understanding of potential miRNAs affecting estrogen synthesis will help to diagnose and treat steroid-related diseases.


miR-764-3p 17β-estradiol Granulosa cell SF-1 



This work was supported by the following grants: the National Natural Science Foundation of China (81100399); Chongqing Yuzhong District Natural Science Foundation of China (20150117).

Compliance with ethical standards

Disclosure summary

The authors have nothing to disclose.

Authors’ contribution

Ll.W. performed cell extraction, RNA extraction, gene expression, Western blotting, and drafted the manuscript. C.L. performed cell proliferation and estradiol analysis. R.L. performed cell culture. Yl.D. and Yx.T. performed plasmid construction and data analysis. C.T. revised the manuscript. Hb.Q. designed experiments and wrote this manuscript. All of the authors have read and approved the final version of the manuscript.

Supplementary material

11626_2015_9977_MOESM1_ESM.docx (38 kb)
ESM 1 Supplemental Figure S1. The efficacy of SF-1 siRNAs was evaluated by Western blotting after 48 h transfection with either si-NC or si-SF-1. Supplemental Table S1. List of primer pairs for real-time PCR. Supplemental Table S2. List of primer pairs for construction of vectors. (DOCX 37 kb)


  1. Adashi EY, Hsueh AJ (1982) Estrogens augment the stimulation of ovarian aromatase activity by follicle-stimulating hormone in cultured rat granulosa cells. J Biol Chem 257(11):6077–6083PubMedGoogle Scholar
  2. Ahn HW et al (2010) Micron transcriptome in the newborn mouse ovaries determined by massive parallel sequencing. Mol Hum Reprod 16(7):463–471CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355CrossRefPubMedGoogle Scholar
  4. Barnett KR et al (2006) Ovarian follicle development and transgenic mouse models. Hum Reprod Update 12(5):537–555CrossRefPubMedGoogle Scholar
  5. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233CrossRefPubMedPubMedCentralGoogle Scholar
  6. Buaas FW et al (2012) In vivo evidence for the crucial role of SF1 in steroid-producing cells of the testis, ovary and adrenal gland. Development 139(24):4561–4570CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cocquet J et al (2005) Sense and antisense Foxl2 transcripts in mouse. Genomics 85(5):531–541CrossRefPubMedGoogle Scholar
  8. Dai A et al (2013) MicroRNA-133b stimulates ovarian estradiol synthesis by targeting Foxl2. FEBS Lett 587(15):2474–2482CrossRefPubMedGoogle Scholar
  9. Drummond AE (2006) The role of steroids in follicular growth. Reprod Biol Endocrinol 4:16CrossRefPubMedPubMedCentralGoogle Scholar
  10. Edson MA, Nagaraja AK, Matzuk MM (2009) The mammalian ovary from genesis to revelation. Endocr Rev 30(6):624–712CrossRefPubMedPubMedCentralGoogle Scholar
  11. Endo M et al (2013) Estradiol supports in vitro development of bovine early antral follicles. Reproduction 145(1):85–96CrossRefPubMedGoogle Scholar
  12. Fortune JE (2003) The early stages of follicular development: activation of primordial follicles and growth of preantral follicles. Anim Reprod Sci 78(3–4):135–163CrossRefPubMedGoogle Scholar
  13. Garzo VG, Dorrington JH (1984) Aromatase activity in human granulosa cells during follicular development and the modulation by follicle-stimulating hormone and insulin. Am J Obstet Gynecol 148(5):657–662CrossRefPubMedGoogle Scholar
  14. Griffiths-Jones S et al (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34(Database issue):D140–D144CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hirshfield AN (1991) Development of follicles in the mammalian ovary. Int Rev Cytol 124:43–101CrossRefPubMedGoogle Scholar
  16. Hrabia A, Ha Y, Shimada K (2004) Expression of estrogen receptor alpha mRNA in theca and granulosa layers of the ovary in relation to follicular growth in quail. Folia Biol (Krakow) 52(3–4):191–195CrossRefGoogle Scholar
  17. Ingraham HA et al (1994) The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis. Genes Dev 8(19):2302–2312CrossRefPubMedGoogle Scholar
  18. Jenkins C et al (1993) Exon-specific northern analysis and rapid amplification of cDNA ends (RACE) reveal that the proximal promoter II (PII) is responsible for aromatase cytochrome P450 (CYP19) expression in human ovary. Mol Cell Endocrinol 97(1–2):R1–R6CrossRefPubMedGoogle Scholar
  19. Knight PG, Glister C (2006) TGF-beta superfamily members and ovarian follicle development. Reproduction 132(2):191–206CrossRefPubMedGoogle Scholar
  20. Krek A et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500CrossRefPubMedGoogle Scholar
  21. Lan HC et al (2007) Cyclic AMP stimulates SF-1-dependent CYP11A1 expression through homeodomaininteracting protein kinase 3-mediated Jun N-terminal kinase and c-Jun phosphorylation. Mol Cell Biol 27(6):2027–2036CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20CrossRefPubMedGoogle Scholar
  23. Liang N et al (2011) Steroidogenic factor-1 is required for TGF-beta3-mediated 17beta-estradiol synthesis in mouse ovarian granulosa cells. Endocrinology 152(8):3213–3225CrossRefPubMedGoogle Scholar
  24. Liang M et al (2013) Transcriptional cooperation between p53 and NF-kappaB p65 regulates microRNA-224 transcription in mouse ovarian granulosa cells. Mol Cell Endocrinol 370(1–2):119–129CrossRefPubMedGoogle Scholar
  25. Lourenco D et al (2009) Mutations in NR5A1 associated with ovarian insufficiency. N Engl J Med 360(12):1200–1210CrossRefPubMedPubMedCentralGoogle Scholar
  26. Luo X, Ikeda Y, Parker KL (1994) A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77(4):481–490CrossRefPubMedGoogle Scholar
  27. Matsumura T et al (2013) Human glutathione S-transferase A (GSTA) family genes are regulated by steroidogenic factor 1 (SF-1) and are involved in steroidogenesis. FASEB J 27(8):3198–3208CrossRefPubMedGoogle Scholar
  28. McGee EA, Hsueh AJ (2000) Initial and cyclic recruitment of ovarian follicles. Endocr Rev 21(2):200–214PubMedGoogle Scholar
  29. Morohashi K et al (1992) A common trans-acting factor, Ad4-binding protein, to the promoters of steroidogenic P- 450s. J Biol Chem 267(25):17913–17919PubMedGoogle Scholar
  30. Nagaraja AK et al (2008) Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Mol Endocrinol 22(10):2336–2352CrossRefPubMedPubMedCentralGoogle Scholar
  31. Otsuka M et al (2008) Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. J Clin Invest 118(5):1944–1954CrossRefPubMedPubMedCentralGoogle Scholar
  32. Parker KL, Schimmer BP (1997) Steroidogenic factor 1: a key determinant of endocrine development and function. Endocr Rev 18(3):361–377CrossRefPubMedGoogle Scholar
  33. Parker KL et al (2002) Steroidogenic factor 1: an essential mediator of endocrine development. Recent Prog Horm Res 57:19–36CrossRefPubMedGoogle Scholar
  34. Rice DA et al (1991) A shared promoter element regulates the expression of three steroidogenic enzymes. Mol Endocrinol 5(10):1552–1561CrossRefPubMedGoogle Scholar
  35. Robker RL, Richards JS (1998) Hormone-induced proliferation and differentiation of granulosa cells: a coordinated balance of the cell cycle regulators cyclin D2 and p27Kip1. Mol Endocrinol 12(7):924–940CrossRefPubMedGoogle Scholar
  36. Salilew-Wondim D et al (2014) The expression pattern of microRNAs in granulosa cells of subordinate and dominant follicles during the early luteal phase of the bovine estrous cycle. PLoS One 9(9):e106795CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sasson R et al (2003) Novel genes modulated by FSH in normal and immortalized FSH-responsive cells: new insights into the mechanism of FSH action. FASEB J 17(10):1256–1266CrossRefPubMedGoogle Scholar
  38. Shen L et al (2013) MicroRNA23a and microRNA23b deregulation derepresses SF-1 and upregulates estrogen signaling in ovarian endometriosis. J Clin Endocrinol Metab 98(4):1575–1582CrossRefPubMedGoogle Scholar
  39. Sun K, Lai EC (2013) Adult-specific functions of animal microRNAs. Nat Rev Genet 14(8):535–548CrossRefPubMedPubMedCentralGoogle Scholar
  40. Takasawa K et al (2014) FOXL2 transcriptionally represses Sf1 expression by antagonizing WT1 during ovarian development in mice. FASEB J 28(5):2020–2028CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tam OH et al (2008) Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453(7194):534–538CrossRefPubMedPubMedCentralGoogle Scholar
  42. Tasaki H et al (2013) Estradiol has a major role in antrum formation of porcine preantral follicles cultured in vitro. Theriogenology 79(5):809–814CrossRefPubMedGoogle Scholar
  43. Troppmann B et al (2014) Micron miR-513a-3p acts as a co-regulator of luteinizing hormone/chorionic gonadotropin receptor gene expression in human granulosa cells. Mol Cell Endocrinol 390(1–2):65–72CrossRefPubMedGoogle Scholar
  44. Vanderhyden BC, Macdonald EA (1998) Mouse oocytes regulate granulosa cell steroidogenesis throughout follicular development. Biol Reprod 59(6):1296–1301CrossRefPubMedGoogle Scholar
  45. Xia HF et al (2014) Micron expression and regulation in the uterus during embryo implantation in rat. FEBS J 281(7):1872–1891CrossRefPubMedGoogle Scholar
  46. Xu S et al (2011) Micro-RNA378 (miR-378) regulates ovarian estradiol production by targeting aromatase. Endocrinology 152(10):3941–3951CrossRefPubMedPubMedCentralGoogle Scholar
  47. Xue Q et al (2014) Methylation of a novel CpG island of intron 1 is associated with steroidogenic factor 1 expression in endometriotic stromal cells. Reprod Sci 21(3):395–400CrossRefPubMedPubMedCentralGoogle Scholar
  48. Yao G et al (2010) Micron-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol Endocrinol 24(3):540–551CrossRefPubMedGoogle Scholar
  49. Yao G et al (2014) Micron-224 is involved in the regulation of mouse cumulus expansion by targeting Ptx3. Mol Cell Endocrinol 382(1):244–253CrossRefPubMedGoogle Scholar
  50. Yin M et al (2012) Transactivation of microRNA-383 by steroidogenic factor-1 promotes estradiol release from mouse ovarian granulosa cells by targeting RBMS1. Mol Endocrinol 26(7):1129–1143CrossRefPubMedGoogle Scholar
  51. Zamore PD, Haley B (2005) Ribo-gnome: the big world of small RNAs. Science 309(5740):1519–1524CrossRefPubMedGoogle Scholar
  52. Zhang H et al (2014) microRNA 376a regulates follicle assembly by targeting Pcna in fetal and neonatal mouse ovaries. Reproduction 148(1):43–54CrossRefPubMedGoogle Scholar
  53. Zhao Z et al (2012) Circulating microRNA miR-323-3p as a biomarker of ectopic pregnancy. Clin Chem 58(5):896–905CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2015

Authors and Affiliations

  • Lianlian Wang
    • 1
    • 3
  • Cong Li
    • 4
  • Rong Li
    • 2
    • 3
  • Youlin Deng
    • 4
  • Yixin Tan
    • 5
  • Chao Tong
    • 2
    • 3
  • Hongbo Qi
    • 2
    • 3
    Email author
  1. 1.Department of Reproduction Health and InfertilityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingPeople’s Republic of China
  2. 2.Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingPeople’s Republic of China
  3. 3.China-Canada-New Zealand Joint Laboratory of Maternal and Fetal MedicineChongqing Medical UniversityChongqingPeople’s Republic of China
  4. 4.Department of GynecologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingPeople’s Republic of China
  5. 5.Department of Medical RecordsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingPeople’s Republic of China

Personalised recommendations