Skip to main content
Log in

Novel model of innate immunity in corneal infection

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The cornea functions as the major refractive interface for vision and protects the internal eye from insult. Current understanding of innate immune responses to corneal infection derives from a synthesis of in vitro and in vivo analyses. However, monolayer cell cultures and mouse models do not accurately duplicate all aspects of innate immunity in human patients. Here, we describe a three-dimensional culture system that incorporates human cells and extracellular matrix to more completely simulate the human cornea for studies of infection. Human corneal stromal fibroblasts were mixed with type I collagen in 3-μm pore size transwell inserts, and overlayed with Matrigel to simulate a human corneal stroma and epithelial basement membrane. These were then infected with a cornea-tropic adenovirus, and exposed on their inferior side to leukocytes derived from human peripheral blood. Subsequent analyses were performed with histology, confocal microscopy, ELISA, and fluorescence-activated cell sorting (FACS). CXCL8, a neutrophil chemokine shown previously as the first cytokine induced in infection of human corneal cells, increased upon adenovirus infection of facsimiles in a dose-responsive fashion. Myeloperoxidase-positive cells infiltrated infected corneal facsimiles in a sub-Matrigel location, possibly due to CXCL8 colocalization with heparan sulfate, a Matrigel constituent. Cellular infiltration was significantly inhibited by treatment with chemical inhibitors of p38 MAPK and Src kinase, both constituents of a signaling cascade previously suggested to regulate inflammation after adenovirus infection. FACS analysis determined that both virus and corneal fibroblasts were necessary for the induction of leukocyte migration into the facsimiles. The corneal facsimile, literally a cornea in a test tube, permits mechanistic studies on human tissue in a highly tractable system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Alexandrakis G, Alfonso EC, Miller D (2000) Shifting trends in bacterial keratitis in south Florida and emerging resistance to fluoroquinolones. Ophthalmology 107(8):1497–1502

    Article  CAS  PubMed  Google Scholar 

  • Benton G, Kleinman HK, George J, Arnaoutova I (2011) Multiple uses of basement membrane-like matrix (BME/Matrigel) in vitro and in vivo with cancer cells. Inter J Cancer 128(8):1751–1757

    Article  CAS  Google Scholar 

  • Bergan T (1981) Pathogenetic factors of Pseudomonas aeruginosa. Scand J Infect Dis Suppl 29:7–12

    CAS  PubMed  Google Scholar 

  • Blair GE, Dixon SC, Griffiths SA, Zajdel ME (1989) Restricted replication of human adenovirus type 5 in mouse cell lines. Virus Res 14(4):339–346

    Article  CAS  PubMed  Google Scholar 

  • Boyden S (1962) The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115:453–466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Butt AL, Chodosh J (2006) Adenoviral keratoconjunctivitis in a tertiary care eye clinic. Cornea 25(2):199–202

    Article  PubMed  Google Scholar 

  • Chintakuntlawar AV, Chodosh J (2009) Chemokine CXCL1/KC and its receptor CXCR2 are responsible for neutrophil chemotaxis in adenoviral keratitis. J Interferon Cytokine Res 29(10):657–666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chintakuntlawar AV, Astley R, Chodosh J (2007) Adenovirus type 37 keratitis in the C57BL/6J mouse. Invest Ophthalmol Vis Sci 48(2):781–788

    Article  PubMed  Google Scholar 

  • Chintakuntlawar AV, Zhou X, Rajaiya J, Chodosh J (2010) Viral capsid is a pathogen-associated molecular pattern in adenovirus keratitis. PLoS Pathog 6(4):e1000841

    Article  PubMed Central  PubMed  Google Scholar 

  • Chodosh J, Astley RA, Butler MG, Kennedy RC (2000) Adenovirus keratitis: a role for interleukin-8. Invest Ophthalmol Vis Sci 41(3):783–789

    CAS  PubMed  Google Scholar 

  • Chusid MJ, Davis SD (1985) Polymorphonuclear leukocyte kinetics in experimentally induced keratitis. Arch Ophthalmol 103(2):270–274

    Article  CAS  PubMed  Google Scholar 

  • Duncan SJ, Gordon FC, Gregory DW, McPhie JL, Postlethwaite R, White R, Willcox HN (1978) Infection of mouse liver by human adenovirus type 5. J Gen Virol 40(1):45–61

    Article  CAS  PubMed  Google Scholar 

  • Fallica B, Maffei JS, Villa S, Makin G, Zaman M (2012) Alteration of cellular behavior and response to PI3K pathway inhibition by culture in 3D collagen gels. PLoS One 7(10):e48024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ford E, Nelson KE, Warren D (1987) Epidemiology of epidemic keratoconjunctivitis. Epidemiol Rev 9:244–261

    CAS  PubMed  Google Scholar 

  • Ginsberg HS, Moldawer LL, Sehgal PB, Redington M, Kilian PL, Chanock RM, Prince GA (1991) A mouse model for investigating the molecular pathogenesis of adenovirus pneumonia. Proc Natl Acad Sci USA 88(5):1651–1655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harada A, Sekido N, Akahoshi T, Wada T, Mukaida N, Matsushima K (1994) Essential involvement of interleukin-8 (IL-8) in acute inflammation. J Leukoc Biol 56(5):559–564

    CAS  PubMed  Google Scholar 

  • Kahle NA, Brenner-Weiss G, Overhage J, Obst U, Hansch GM (2013) Bacterial quorum sensing molecule induces chemotaxis of human neutrophils via induction of p38 and leukocyte specific protein 1 (LSP1). Immunobiology 218(2):145–151

    Article  CAS  PubMed  Google Scholar 

  • Khandoga AG, Khandoga A, Reichel CA, Bihari P, Rehberg M, Krombach F (2009) In vivo imaging and quantitative analysis of leukocyte directional migration and polarization in inflamed tissue. PLoS One 4(3):e4693

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim JB (2005) Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol 15(5):365–377

    Article  PubMed  Google Scholar 

  • Kim LC, Song L, Haura EB (2009) Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol 6(10):587–595

    Article  PubMed  Google Scholar 

  • Kyriakis JM, Avruch J (2012) Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 92(2):689–737

    Article  CAS  PubMed  Google Scholar 

  • LaGier AJ, Gordon GM, Katzman LR, Vasiliou V, Fini ME (2013) Mechanisms for PDGF, a serum cytokine, stimulating loss of corneal keratocyte crystallins. Cornea 32(9):1269–1275

    Article  PubMed  Google Scholar 

  • Lakshman N, Petroll WM (2012) Growth factor regulation of corneal keratocyte mechanical phenotypes in 3-D collagen matrices. Invest Ophthalmol Vis Sci 53(3):1077–1086

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Middleton J, Neil S, Wintle J, Clark-Lewis I, Moore H, Lam C, Auer M, Hub E, Rot A (1997) Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell 91(3):385–395

    Article  CAS  PubMed  Google Scholar 

  • Natarajan K, Chodosh J, Kennedy R (2002a) Innate immunity in the cornea: a putative role for keratocytes in the chemokine response to viral infection of the human corneal stroma. Adv Exp Med Biol 506(Pt B):745–751

    Article  CAS  PubMed  Google Scholar 

  • Natarajan K, Ghalayini AJ, Sterling RS, Holbrook RM, Kennedy RC, Chodosh J (2002b) Activation of focal adhesion kinase in adenovirus-infected human corneal fibroblasts. Invest Ophthalmol Vis Sci 43(8):2685–2690

    PubMed  Google Scholar 

  • Natarajan K, Shepard LA, Chodosh J (2002c) The use of DNA array technology in studies of ocular viral pathogenesis. DNA Cell Biol 21(5-6):483–490

    Article  CAS  PubMed  Google Scholar 

  • Natarajan K, Rajala MS, Chodosh J (2003) Corneal IL-8 expression following adenovirus infection is mediated by c-Src activation in human corneal fibroblasts. J Immunol 170(12):6234–6243

    Article  CAS  PubMed  Google Scholar 

  • Nelson CM, Khauv D, Bissell MJ, Radisky DC (2008) Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells. J Cell Biochem 105(1):25–33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nickerson CA, Goodwin TJ, Terlonge J, Ott CM, Buchanan KL, Uicker WC, Emami K, LeBlanc CL, Ramamurthy R, Clarke MS, Vanderburg CR, Hammond T, Pierson DL (2001) Three-dimensional tissue assemblies: novel models for the study of Salmonella enterica serovar Typhimurium pathogenesis. Infect Immun 69(11):7106–7120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pichert A, Schlorke D, Franz S, Arnhold J (2012) Functional aspects of the interaction between interleukin-8 and sulfated glycosaminoglycans. Biomatter 2(3):142–148

    Article  PubMed Central  PubMed  Google Scholar 

  • Pietrosimone KM, Bhandari S, Lemieux MG, Knecht DA, Lynes MA (2013) In vitro assays of chemotaxis as a window into mechanisms of toxicant-induced immunomodulation. Curr Protoc Toxicol 58:Unit 18.17

  • Rajaiya J, Xiao J, Rajala RV, Chodosh J (2008) Human adenovirus type 19 infection of corneal cells induces p38 MAPK-dependent interleukin-8 expression. Virol J 5:17

    Article  PubMed Central  PubMed  Google Scholar 

  • Rajaiya J, Sadeghi N, Chodosh J (2009) Specific NFkappaB subunit activation and kinetics of cytokine induction in adenoviral keratitis. Mol Vis 15:2879–2889

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rajala MS, Rajala RV, Astley RA, Butt AL, Chodosh J (2005) Corneal cell survival in adenovirus type 19 infection requires phosphoinositide 3-kinase/Akt activation. J Virol 79(19):12332–12341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suzuki T, Yamada A, Gilmore MS (2010) Host-pathogen interactions in the cornea. Jpn J Ophthalmol 54(3):191–193

    Article  PubMed  Google Scholar 

  • Taub DD, Anver M, Oppenheim JJ, Longo DL, Murphy WJ (1996) T lymphocyte recruitment by interleukin-8 (IL-8). IL-8-induced degranulation of neutrophils releases potent chemoattractants for human T lymphocytes both in vitro and in vivo. J Clin Invest 97(8):1931–1941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson RE, Boraas LC, Sowder M, Bechtel MK, Orwin EJ (2013) Three-dimensional cell culture environment promotes partial recovery of the native corneal keratocyte phenotype from a subcultured population. Tissue Eng Part A 19(13-14):1564–1572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Torricelli AA, Singh V, Santhiago MR, Wilson SE (2013) The corneal epithelial basement membrane: structure, function, and disease. Invest Ophthalmol Vis Sci 54(9):6390–6400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Webb LM, Ehrengruber MU, Clark-Lewis I, Baggiolini M, Rot A (1993) Binding to heparan sulfate or heparin enhances neutrophil responses to interleukin 8. Proc Natl Acad Sci USA 90(15):7158–7162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weigelt B, Bissell MJ (2008) Unraveling the microenvironmental influences on the normal mammary gland and breast cancer. Semin Cancer Biol 18(5):311–321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • West-Mays JA, Dwivedi DJ (2006) The keratocyte: corneal stromal cell with variable repair phenotypes. Int J Biochem Cell Biol 38(10):1625–1631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao J, Chodosh J (2005) JNK regulates MCP-1 expression in adenovirus type 19-infected human corneal fibroblasts. Invest Ophthalmol Vis Sci 46(10):3777–3782

    Article  PubMed  Google Scholar 

  • Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130(4):601–610

    Article  CAS  PubMed  Google Scholar 

  • Younghusband HB, Tyndall C, Bellett AJ (1979) Replication and interaction of virus DNA and cellular DNA in mouse cells infected by a human adenovirus. J Gen Virol 45(2):455–467

    Article  CAS  PubMed  Google Scholar 

  • Yousuf MA, Zhou X, Mukherjee S, Chintakuntlawar AV, Lee JY, Ramke M, Chodosh J, Rajaiya J (2013) Caveolin-1 associated adenovirus entry into human corneal cells. PLoS One 8(10):e77462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants R01 EY021558 (JR), EY01324 (JC), and P30 EY014104 from the National Eye Institute, the Massachusetts Lions Eye Research Fund (JR), a Senior Scientific Investigator Award from Research to Prevent Blindness (JC), and the Falk Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Chodosh.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajaiya, J., Zhou, X., Barequet, I. et al. Novel model of innate immunity in corneal infection. In Vitro Cell.Dev.Biol.-Animal 51, 827–834 (2015). https://doi.org/10.1007/s11626-015-9910-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-015-9910-2

Keywords

Navigation