Skip to main content
Log in

Transcriptome analysis reveals the potential mechanism of the albino skin development in pufferfish Takifugu obscurus

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Our aim was to explore the potential mechanism underlying albino in Takifugu obscurus. The transcriptome sequencing of the skin samples from normal T. obscurus and albino ones was conducted in this paper. The differentially expressed genes (DEGs) in albino fish compared with controls were assayed. The gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were performed to explore the differentially expressed gene (DEG)-related functions and pathways. A total of 32 genes were found to be differentially expressed, including eight upregulated ones and 24 downregulated ones. Five GO terms were significantly enriched such as hemoglobin complex and oxygen transporter activity. The significantly enriched pathways contained linoleic acid metabolism and arachidonic acid metabolism. Hemoglobin complex, linoleic, and arachidonic acid metabolism may dysregulated in albino fugu. Dietary control of the linoleic acid and arachidonic acid may be an effective management for mediating albino in T. obscurus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Ando H, Funasaka Y, Oka M, Ohashi A, Furumura M, Matsunaga J, Matsunaga N, Hearing VJ, Ichihashi M (1999) Possible involvement of proteolytic degradation of tyrosinase in the regulatory effect of fatty acids on melanogenesis. J Lipid Res 40:1312–1316

    CAS  PubMed  Google Scholar 

  • Ando H, Kondoh H, Ichihashi M, Hearing VJ (2007) Approaches to identify inhibitors of melanin biosynthesis via the quality control of tyrosinase. J Invest Dermatol 127:751–761

    Article  CAS  PubMed  Google Scholar 

  • Ando H, Ryu A, Hashimoto A, Oka M, Ichihashi M (1998) Linoleic acid and alpha-linolenic acid lightens ultraviolet-induced hyperpigmentation of the skin. Arch Dermatol Res 290:375–381

    Article  CAS  PubMed  Google Scholar 

  • Ando H, Watabe H, Valencia JC, Yasumoto K-i, Furumura M, Funasaka Y, Oka M, Ichihashi M, Hearing VJ (2004) Fatty acids regulate pigmentation via proteasomal degradation of tyrosinase a new aspect of ubiquitin-proteasome function. J Biol Chem 279:15427–15433

    Article  CAS  PubMed  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beermann F, Orlow SJ, Lamoreux ML (2004) The tyr (albino) locus of the laboratory mouse. Mamm Genome 15:749–758

    Article  CAS  PubMed  Google Scholar 

  • Bell J, McEvoy L, Estevez A, Shields R, Sargent J (2003) Optimising lipid nutrition in first-feeding flatfish larvae. Aquaculture 227:211–220

    Article  CAS  Google Scholar 

  • Bertolotto C, Abbe P, Bille K, Aberdam E, Ortonne J-P, Ballotti R (1998) Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia. Mol Cell Biol 18:694–702

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brenner S, Elgar G, Sanford R, Macrae A, Venkatesh B, Aparicio S (1993) Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature 366:265–268

    Article  CAS  PubMed  Google Scholar 

  • Burr GO, Burr MM (1930) On the nature and role of the fatty acids essential in nutrition. J Biol Chem 86:587–621

    CAS  Google Scholar 

  • Cui J, Wang H, Liu S, Qiu X, Jiang Z, Wang X (2014) Transcriptome analysis of the gill of < i > Takifugu rubripes</i > using Illumina sequencing for discovery of SNPs. Comp Biochem Physiol Part D Genomics Proteomics 10:44–51

    Article  CAS  PubMed  Google Scholar 

  • Eizirik E, Yuhki N, Johnson WE, Menotti-Raymond M, Hannah SS, O’Brien SJ (2003) Molecular genetics and evolution of melanism in the cat family. Curr Biol 13:448–453

    Article  CAS  PubMed  Google Scholar 

  • Fustier C, Chang TM (2012) PEG-PLA nanocapsules containing a nanobiotechnological complex of polyhemoglobin-tyrosinase for the depletion of tyrosine in melanoma: preparation and in vitro characterisation. J Nanomedicine Biotherapeutic Discov 2:1

    Google Scholar 

  • Guillery R, Scott G, Cattanach B, Deol M (1973) Genetic mechanisms determining the central visual pathways of mice. Science 179:1014–1016

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • King RA, Pietsch J, Fryer JP, Savage S, Brott MJ, Russell-Eggitt I, Summers CG, Oetting WS (2003) Tyrosinase gene mutations in oculocutaneous albinism 1 (OCA1): definition of the phenotype. Hum Genet 113:502–513

    Article  CAS  PubMed  Google Scholar 

  • Koven W, Barr Y, Lutzky S, Ben-Atia I, Weiss R, Harel M, Behrens P, Tandler A (2001) The effect of dietary arachidonic acid (20: 4 < i > n</i > − 6) on growth, survival and resistance to handling stress in gilthead seabream (< i > Sparus aurata</i>) larvae. Aquaculture 193:107–122

    Article  CAS  Google Scholar 

  • Lavado A, Jeffery G, Tovar V, de la Villa P, Montoliu L (2006) Ectopic expression of tyrosine hydroxylase in the pigmented epithelium rescues the retinal abnormalities and visual function common in albinos in the absence of melanin. J Neurochem 96:1201–1211

    Article  CAS  PubMed  Google Scholar 

  • Liu K-L, Belury MA (1998) Conjugated linoleic acid reduces arachidonic acid content and PGE < sub > 2</sub > synthesis in murine keratinocytes. Cancer Lett 127:15–22

    Article  CAS  PubMed  Google Scholar 

  • Marcel Y, Christiansen K, Holman R (1968) The preferred metabolic pathway from linoleic acid to arachidonic acid < i > in vitro</i> BBA-Gene Regul Mech 164:25–34

    CAS  Google Scholar 

  • Menotti-Raymond M, David V, Chen Z, Menotti K, Sun S, Schäffer A, Agarwala R, Tomlin J, O’Brien S, Murphy W (2003) Second-generation integrated genetic linkage/radiation hybrid maps of the domestic cat (Felis catus). J Hered 94:95–106

    Article  CAS  PubMed  Google Scholar 

  • Mintz B, Bradl M (1991) Mosaic expression of a tyrosinase fusion gene in albino mice yields a heritable striped coat color pattern in transgenic homozygotes. Proc Natl Acad Sci 88:9643–9647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sargent J, McEvoy L, Estevez A, Bell G, Bell M, Henderson J, Tocher D (1999) Lipid nutrition of marine fish during early development: current status and future directions. Aquaculture 179:217–229

    Article  CAS  Google Scholar 

  • Schmidt-Küntzel A, Eizirik E, O’Brien SJ, Menotti-Raymond M (2005) Tyrosinase and tyrosinase related protein 1 alleles specify domestic cat coat color phenotypes of the albino and brown loci. J Hered 96:289–301

    Article  PubMed  Google Scholar 

  • Shibahara S, Okinaga S, Tomita Y, Takeda A, Yamamoto H, Sato M, Takeuchi T (1990) A point mutation in the tyrosinase gene of BALB/c albino mouse causing the cysteine–serine substitution at position 85. Eur J Biochem 189:455–461

    Article  CAS  PubMed  Google Scholar 

  • Shigeta Y, Imanaka H, Ando H, Ryu A, Oku N, Baba N, Makino T (2004) Skin whitening effect of linoleic acid is enhanced by liposomal formulations. Biol Pharm Bull 27:591–594

    Article  CAS  PubMed  Google Scholar 

  • Smith B, Selby P, Southgate J, Pittman K, Bradley C, Blair GE (1991) Detection of melanoma cells in peripheral blood by means of reverse transcriptase and polymerase chain reaction. Lancet 338:1227–1229

    Article  CAS  PubMed  Google Scholar 

  • Villalta M, Estévez A, Bransden MP (2005) Arachidonic acid enriched live prey induces albinism in Senegal sole (< i > Solea senegalensis</i>) larvae. Aquaculture 245:193–209

    Article  CAS  Google Scholar 

  • Wang B, Yu L, Hu L, Li Y, Liu S, Jiang Z (2008) Isolation and identification of bacteriosis pathogen from cultured Fugu obscurus with canker of skin. J Fish Sci China 15:352–358

    CAS  Google Scholar 

  • Wang B, Yu L, Yuan T, Jiang Z (2010) Pathogenicity of extracellular products of Vibrio harveyi to Fugu obscurus. J Fish Sci China 17:88–96

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nonprofit Institute Research Grant of Freshwater Fisheries Research Center, CAFS (2013JBFR07). We wish to express our warm thanks to Fenghe (Shanghai) Information Technology Co., Ltd. Their ideas and help gave a valuable added dimension to our research.

Conflict of interest

All authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruobo Gu.

Additional information

Editor: T. Okamoto

Wu Jin and Haibo Wen are first co-authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, W., Wen, H., Du, X. et al. Transcriptome analysis reveals the potential mechanism of the albino skin development in pufferfish Takifugu obscurus . In Vitro Cell.Dev.Biol.-Animal 51, 572–577 (2015). https://doi.org/10.1007/s11626-015-9871-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-015-9871-5

Keyword

Navigation