Skip to main content
Log in

Isolation, culture, and induced multiple differentiation of Mongolian sheep bone marrow-derived mesenchymal stem cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

An Erratum to this article was published on 27 March 2015

Abstract

The aim of this paper was to explore the optimal method of isolating, purifying, and proliferating Mongolian sheep bone marrow-derived mesenchymal stem cells (BMSCs) and their multiple differentiation potentialities. Bone marrow (BM) was punctured from ∼1-year-old sheep, and BMSCs were harvested through gradient centrifuge and adherent cultures. Analysis of the growth of the passage 1, 5, and 10 cultures revealed an S-shaped growth curve with a population doubling time of 31.2 h. Karyotyping indicated that the chromosome number in the Mongolian sheep was 2n = 54, comprising 26 pairs of autosomes and one pair of sex chromosomes (XY). RT-PCR demonstrated that OCT4, SOX2, and Nanog genes at passage 3 were positively expressed. The P3 BMSCs were cultured in vitro under inductive environments and induced into adipocytes, osteoblasts, chondrocytes, neural cells, and cardiomyocytes. Their differentiation properties were confirmed by histological staining, such as oil red, Alizarin red, hematoxylin–eosin, toluidine blue, and periodic acid schiff. RT-PCR showed that the specific genes to be induced were all expressed. This proves that the isolated cells are indeed the BMSCs and also provides valuable materials for somatic cell cloning and transgenic research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Akiyama H.; Chaboissier M. C.; Martin J. F.; Schedl A.; Crombrugghe B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 16(21): 2813–28; 2002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anja T.; Rolf B. Mesenchymal stem cell signaling in cancer progression. Cancer Treat. Rev. 39(2): 180–188; 2013.

    Article  Google Scholar 

  • Ankrum J.; Karp J. M. Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol. Med. 16: 203–209; 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  • Augello A.; Kurth T. B.; De B. C. Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niches. Eur Cell Mater. 20: 121–133; 2010.

    CAS  PubMed  Google Scholar 

  • Bajada S.; Mazakova I.; Richardson J. B.; Ashammakhi N. Updates on stem cells and their applications in regenerative medicine. J. Tissue Eng. Regen. Med. 2: 169–183; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Battula V. L.; Treml S.; Bareiss P. M.; Gieseke F.; Roelofs H.; Zwart P. Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica 94: 173–184; 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blelloch R.; Wang Z.; Meissner A. Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of donor nucleus. Stem Cells 24(9): 2007–13; 2006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bobis S.; Jarocha D.; Majka M. Mesenchymal stem cells: characteristics and clinical applications. Folia Histochem. Cytobiol. 44: 215–230; 2006.

    CAS  PubMed  Google Scholar 

  • Bosch P.; Pratt S. L.; Stice S. L. Isolation, characterization, gene modification and nuclear reprogramming of porcine mesenchymal stem cells. J. Biol. Reprod. 74: 46–57; 2006.

    Article  CAS  Google Scholar 

  • Branch M. J.; Hashmani K.; Dhillon P.; Jones D. R.; Dua H. S.; Hopkinson A. Mesenchymal stem cells in the human corneal limbal stroma. Invest. Ophthalmol. Vis. Sci. 53(9): 5109–16; 2012.

    Article  PubMed  Google Scholar 

  • Carlin R.; Davis D.; Weiss M.; Schultz B.; Troyer D. Expression of early transcription factors Oct4, Sox2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod. Biol. Endocrinol. 4: 8–21; 2006.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cremonesi F.; Violini S.; Lange C. A.; Ramelli P.; Ranzenig G.; Mariani P. Isolation, in vitro culture and characterization of foal umbilical cord stem cells at birth. Vet. Res. Commun. 32(Suppl 1): S139–S142; 2008.

    Article  PubMed  Google Scholar 

  • Deans R. J.; Moseley A. B. Mesenchymal stem cell: biology and potential clinical uses. Exp. Hematol. 28(8): 875–884; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Dominici M.; Le Blanc K.; Mueller I.; Slaper C. I.; Marini F.; Krause D.; Deans R.; Keating A.; Prockop D.; Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4): 315–317; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Engler A.; Sen S.; Sweeney H.; Discher D. Matrix elasticity directs stem cell lineage specification. Cell 126(4): 677–89; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Faast R.; Harrison S. J.; Beebe L. F.; McIlfatrick S. M.; Ashman R. J.; Nottle M. B. Use of adult mesenchymal stem cells isolated from bone marrow and blood for somatic cell nuclear transfer in pigs. Cloning Stem Cells 8(3): 166–173; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Fischer U. M.; Harting M. T.; Jimenez F.; Monzon-Posadas W. O.; Xue H.; Savitz S. I.; Laine G. A.; Cox C. S. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev. 18(5): 683–92; 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Franco Lambert A. P.; Fraga Z. A.; Bonatto D.; Cantarelli M. D.; Pêgas Henriques J. A. Differentiation of human adipose-derived adult stem cells into neuronal tissue: does it work? Differentiation 77(3): 221–8; 2009.

    Article  PubMed  Google Scholar 

  • Fukuchi Y.; Nakajima H.; Sugiyama D.; Hirose I.; Kitamura T.; Tsuji K. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 22: 649–658; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Goldring M. B.; Tsuchimochi K.; Ijiri K. The control of chondrogenesis. J. Cell. Biochem. 97(1): 33–44; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Guan W.; He X.; Li L.; Liang H.; Zhao Q.; Pu Y.; Ma Y. H. Establishment and biological characterization of fibroblast cell line from the Langshan chicken. Cell Prolif. 43: 157–163; 2010.

    Article  CAS  PubMed  Google Scholar 

  • Hao M. C.; Liu B.; Fan J. F.; Wang M. L.; Chen P.; Gao X. D.; Zhang H.; Yu S. J. Establishment and characterization of a yak mammary myoepithelial cell line (YMM). J. Anim. Vet. Adv. 11: 1028–1035; 2012.

    Article  Google Scholar 

  • Hematti P. Mesenchymal stromal cells and fibroblasts: a case of mistaken identity? Cytotherapy 14(5): 516–21; 2012.

    Article  CAS  PubMed  Google Scholar 

  • Ishii K.; Katayama M.; Hori K.; Yodoi J.; Nakanishi T. Effects of 2-mercaptoethanol on survival and differentiation of fetal mouse brain neurons cultured in vitro. Neurosci. Lett. 163(2): 159–62; 1993.

    Article  CAS  PubMed  Google Scholar 

  • Jin H. F.; Kumar B. M.; Kim J. G.; Song H. J.; Jeong Y. J.; Cho S. K.; Balasubramanian S.; Choe S. Y.; Rho G. J. Enhanced development of porcine embryos cloned from bone marrow mesenchymal stem cells. Int. J. Dev. Biol. 51(1): 85–90; 2007.

    Article  PubMed  Google Scholar 

  • Kassem M.; Kristiansen M.; Abdallah B. M. Mesenchymal stem cells: cell biology and potential use in therapy. Basic Clin. Pharmacol. Toxicol. 95: 209–214; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Kato Y.; Imabayashi H.; Mori T. Nuclear transfer of adult bone marrow mesenchymal stem cells: developmental totipotency of tissue specific stem cells from an adult mammal. Biol. Reprod. 70: 415–418; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Kawakami Y.; Rodriguez L. J.; Belmonte J. C. The role of TGF beta s and Sox9 during limb chondrogenesis. Curr. Opin. Cell Biol. 18(6): 723–9; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Mariotti V.; Melissari E.; Amar S.; Conte A.; Belmaker R. H.; Agam G.; Pellegrini S. Effect of prolonged phenytoin administration on rat brain gene expression assessed by DNA microarrays. Exp. Biol. Med. (Maywood) 235: 300–310; 2010.

    Article  CAS  Google Scholar 

  • Miki T.; Lehmann T.; Cai H.; Stolz D.; Strom S. Stem cell characteristics of amniotic epithelial cells. Stem Cells 23: 1549–1559; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Oyajobi B. O.; Lomri A.; Hott M.; Marie P. J. Isolation and characterization of human clonogenic osteoblast progenitors immunoselected from fetal bone marrow stroma using STRO-1 monoclonal antibody. J. Bone Miner. Res. 14(3): 351–61; 1999.

    Article  CAS  PubMed  Google Scholar 

  • Paulsen D. F.; Solursh M. Microtiter micromass cultures of limb-bud mesenchymal cells. In Vitro Cell. Dev. Biol. 24: 138–147; 1988.

    Article  CAS  PubMed  Google Scholar 

  • Phinney D. G.; Prockop D. J. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair-current views. Stem Cells 25(11): 2896–902; 2007.

    Article  PubMed  Google Scholar 

  • Pittenger M. F.; Mackay A. M.; Beck S. C.; Jaiswal R. K.; Douglas R.; Mosca J. D.; Moorman M. A.; Simonetti D. W.; Craig S.; Marshak D. R. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147; 1999.

    Article  CAS  PubMed  Google Scholar 

  • Prockop D. J.; Azizi S. A.; Colter D. Potential use of stem cells from bone marrow to repair the extracellular matrix and central nervous system. Biochem. Soc. Trans. 28(4): 341–345; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Rangappa S.; Fen C.; Lee E. H.; Bongso A.; Wei E. S. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann. Thorac. Surg. 75: 775–9; 2003.

    Article  PubMed  Google Scholar 

  • Ringe J.; Kaps C.; Schmitt B.; Buscher K.; Bartel J.; Smolian H.; Schultz O.; Burmester G. R.; Haupl T.; Sittinger M. Porcine mesenchymal stem cells: induction of distinct mesenchymal cell lineages. Cell Tissue Res. 307: 321–327; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Solursh M. Cartilage stem cells: regulation of differentiation. Connect. Tissue Res. 20: 81–89; 1989.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki I.; Sugio Y.; Moriguchi H. Jimbo Y. Yasuda K. Modification of a neuronal network direction using stepwise photo-thermal etching of an agarose architecture. Journal of Nanobiotechnology. 2(7); 2004. doi:10.1186/1477-3155-2-7

  • Vacanti V.; Kong E.; Suzuki G.; Sato K.; Canty J. M.; Lee T. Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture. J. Cell. Physiol. 205: 194–201; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Violini S.; Ramelli P.; Pisani L. F.; Gorni C.; Mariani P. Horse bone marrow mesenchymal stem cells express embryo stem cell markers and show the ability for tenogenic differentiation by in vitro exposure to BMP-12. BMC Cell Biol. 10: 29; 2009. doi:10.1186/1471-2121-10-29.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wislet G. S.; Leprince P.; Moonen G.; Rogister B. Regulation of neural markers nestin and GFAP expression by cultivated bone marrow stromal cells. J. Cell Sci. 116: 3295–3302; 2003.

    Article  Google Scholar 

  • Wislet G. S.; Hans G.; Leprince P.; Rigo J. M.; Moonen G.; Rogister B. Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells 23(3): 392–402; 2005.

    Article  Google Scholar 

  • Woodbury D.; Schwarz E. J.; Prockop D. J.; Black I. B. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 61: 364–370; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Yadav P. S.; Mann A.; Singh J.; Kumar D.; Sharma R. K.; Singh I. Buffalo (Bubalus bubalis) fetal skin derived fibroblast cells exhibit characteristics of stem cells. Agric. Res. 1(2): 175–182; 2012.

    Article  CAS  Google Scholar 

  • Yadav P. S.; Mann A.; Singh V.; Yashveer S.; Sharma R. K.; Singh I. Expression of pluripotency genes in buffalo (Bubalus bubalis) amniotic fluid cells. Reprod. Dom. Anim. 46(4): 705–711; 2011.

    Google Scholar 

  • Yamanaka S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1: 39–49; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Zhang F. B.; Li L.; Fang B.; Zhu D. L.; Yang H. T.; Gao P. J. Passage-restricted differentiation potential of mesenchymal stem cells into cardiomyocyte-like cells. Biochem. Biophys. Res. Commun. 336(3): 784–792; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Zuk P. A.; Zhu M.; Mizuno H.; Huang J.; Futrell J. W.; Katz A. J.; Benhaim P.; Lorenz H. P.; Hedrick M. H. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7: 211–228; 2001.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Huanmin Zhou for providing the Mongolian sheep and Dr. Yiyi Liu and Lu Li for their technical help. This study was supported by a Grant-in-Aid for the major project of the Inner Mongolia Natural Science Foundation (A) (2012ZD03), a Grant-in-Aid for China Agricultural University cooperation project (B) (2010), and Inner Mongolia Key Laboratory of Biomanufacture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanru Zhang.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Wang, W., Gao, J. et al. Isolation, culture, and induced multiple differentiation of Mongolian sheep bone marrow-derived mesenchymal stem cells. In Vitro Cell.Dev.Biol.-Animal 50, 464–474 (2014). https://doi.org/10.1007/s11626-013-9725-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-013-9725-y

Keywords

Navigation