Skip to main content

Advertisement

Log in

Comparative investigation of the use of various commercial microcarriers as a substrate for culturing mammalian cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

An Erratum to this article was published on 02 May 2014

Abstract

Microcarriers provide large adhesion area allowing high cell densities in bioreactor systems. This study focused on the investigation of cell adhesion and cell growth characteristics of both anchorage-dependent CHO-K1 and anchorage-independent Ag8 myeloma cell lines cultivated on four different microcarriers (Biosilon®, Microhex®, Cytodex 3®, Cytoline 2®) by considering the cell kinetics and physiological data. Experiments were performed in both static and agitated cell culture systems by using 24-well tissue culture plates and then 50-ml spinner flasks. In agitated cultures, the highest specific growth rates (0.026 h for CHO-K1 and 0.061 h for Ag8 cell line) were obtained with Cytodex 3® and Cytoline 2® microcarriers for CHO-K1 and Ag8 cell line, respectively. Metabolic characteristics showed some variation among the cultures with the four microcarriers. The most significant being the higher production of lactate with microcarriers with CHO-K1 cells relative to the Ag8 cells. SEM analyses revealed the differences in the morphology of the cells along with microcarriers. On Cytodex 3® and Cytoline 2®, CHO-K1 cells attached to the substratum through long, slender filopodia, whereas the cells showed a flat morphology by covering the substratum on the Biosilon® and Microhex®. Ag8 cells maintained their spherical shapes throughout the culture for all types of microcarriers. In an attempt to scale-up, productions were carried out in 50-ml spinner flasks. Cytodex 3® (for CHO-K1 cells) and Cytoline 2® (for Ag8 cells) were evaluated. The results demonstrate that high yield of biomass could be achieved through the immobilization of the cells in each culture system. And cell cultures on microcarriers, especially on Cytodex 3® and Cytoline 2®, represented a good potential as microcarriers for larger scale cultures of CHO-K1 and Ag8, respectively. Moreover, owing to the fact that the cell lines and culture media are specific, outcomes will be applicable for other clones derived from the same host cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Arifin M. A.; Mel M.; Karim M. I. A.; Ideris A. Production of Newcastle Disease Virus by Vero Cells Grown on Cytodex 1 Microcarriers in a 2-Litre Stirred Tank Bioreactor. J Biomed Biotechnol 10: 1155–1162; 2010.

    Google Scholar 

  • Ayyıldız D.; Selimoğlu M.; Deliloglu-Gurhan I.; Elibol M. Cultivation of Calcium Alginate Encapsulated Myeloma Cells in Bioreactors. Int J Natural Eng Sci 3: 48–53; 2009.

    Google Scholar 

  • Ayyildız Tamis D.; Nalbantsoy A.; Deliloglu-Gurhan I.; Elibol M. Cultivation of BHK-21 anchorage semi-dependent cell line in different strategies. Turk J Biochem 37: 120–128; 2012.

    Google Scholar 

  • Azma M.; Mohamed M. S.; Mohamad R.; Rahim R. A.; Ariff A. B. Improvements of medium composition for heterotrophic cultivation of green microalgae, Tetraselmis suecica, using response surface methodology. Adv Biochem Eng 53: 187–195; 2010.

    Article  CAS  Google Scholar 

  • Barrias C. C.; Ribeiro C. C.; Lamghari M.; SáMiranda C.; Barbosa M. A. Proliferation, activity, and osteogenic differentiation of bone marrow stromal cells cultured on calcium titanium phosphate microspheres. J Biomed Mater Res-A 72: 57–66; 2004.

    Google Scholar 

  • Chen H.; Fang B.; Hu Z. Simultaneous HPLC Determination of Four Key Metabolites in the Metabolic Pathway for Production of 1,3-Propanediol from Glycerol. J Chromatogr 65: 629–632; 2007.

    Article  CAS  Google Scholar 

  • Chen Z.; Lütkemeyer D.; Iding K.; Lehmann J. High-density culture of recombinant Chinese hamster ovary cells producing prothrombin in protein-free medium. Biotechnol Lett 23: 767–770; 2001.

    Article  CAS  Google Scholar 

  • Chu P.; Grunwald G. D. Identification of on Adhesion-Associated Protein of the Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci 31: 847–856; 1990.

    CAS  PubMed  Google Scholar 

  • Chun B. H.; Chung S. I. Attachment characteristics of normal human cells and virus-infected cells on microcarriers. Cytotechnology 37: 1–12; 2001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Czermak P.; Pörtner R.; Brix A. Special Engineering Aspects. In: Eibl R.; Eibl D.; Pörtner R.; Catapano G.; Czermak P. (eds) Cell and Tissue Reaction Engineering. Springer, Berlin, pp 83–172; 2009.

    Chapter  Google Scholar 

  • Freshney R. I. Quantitation. In: Freshney R. I. (ed) Culture of Animal Cells. 1st ed. John Wiley & Sons, New York, pp 335–359; 2005.

    Chapter  Google Scholar 

  • Gódia F.; Cairó J. J. Cell Metabolism. In: Ozturk S. S.; Hu W. S. (eds) Cell Culture Technology For Pharmaceutical and Cell-Based Therapies. 1st ed. CRC Press Taylor&Francis Group, New York, pp 81–112; 2006.

    Google Scholar 

  • Goldman M. H.; James D. C.; Rendall M.; Ison A. P.; Hoare M.; Bull A. T. Monitoring Recombinant Human Interferon-Gamma N-Glycosylation During Perfused Fluidized-Bed and Stirred-Tank Batch Culture of CHO Cells. Biotechnol Bioeng 60: 596–607; 1998.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths B. Scale-Up of Suspension and Anchorage-Dependent Animal Cells. Mol Biotechnol 17: 225–238; 2001.

    Article  CAS  PubMed  Google Scholar 

  • Hendrick V.; Muniz E.; Geuskens G.; Wérenne J. Adhesion, growth and detachment of cells on modified polystyrene surface. Cytotechnology 36: 49–53; 2001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kenda-Ropson N.; Mention D.; Motte V.; Genlain M.; Miller A.O.A. Microsupport with two-dimensional geometry (2D-MS). 3. In situ determination of the growth kinetics of anchorage-dependent cells by laser diffraction particle sizing (LDPS). Cytotechnology 37:49–53; 2002.

    Google Scholar 

  • Kong D.; Chen M.; Gentz R.; Zhang J. Cell growth and protein formation on various microcarriers. Cytotechnology 29: 149–156; 1999.

    CAS  Google Scholar 

  • Kwon Y.J.; Peng C.A.; Calcium-alginate gel bead cross-linked with gelatin as microcarrier for anchorage-dependent cell culture. Biotechniques 33:212–218; 2002.

    Google Scholar 

  • Landauer K.; Dürrschmid M.; Klug H.; Wiederkum S.; Blüml G.; Dier O. D. Detachment factors for enhanced carrier to carrier transfer of CHO cell lines on macroporous microcarriers. Cytotechnology 39: 37–45; 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lenglois S.; Moser M.; Miller A. O. A. Microsupport with two-dimensional geometry (2D-MS). Cytotechnology 44: 47–54; 2004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Merten O. Introduction to animal cell culture technology-past, present and future. Cytotechnology 50: 1–7; 2006.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nalbantsoy A.; Bora K.; Deliloglu-Gurhan I. Metabolic Activity and Monoclonal Antibody Production of Salmonella Enteritidis O and H Antigen Specific Hybridoma Cells in Static Culture. HYBRIDOMA 30: 189–193; 2011.

    Article  CAS  PubMed  Google Scholar 

  • Nam J. H.; Ermonval M.; Sharfstein S. T. Cell Attachment to Microcarriers Affects Growth, Metabolic Activity, and Culture Productivity in Bioreactor Culture. Biotechnol Prog 23: 652–660; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Nam J. H.; Zhang F.; Ermonval M.; Linhardt R. J.; Sharfstein S. T. The Effects of Culture Conditions on the Glycosylation of Secreted Human Placental Alkaline Phosphatase Produced in Chinese Hamster Ovary Cells. Biotechnol Bioeng 100: 1178–1193; 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nilsang S.; Nehru V.; Plieva F. M.; Nandakumar K. S.; Rakshit S. K.; Holmdahl R.; Mattiasson B.; Kumar A. Three-Dimensional Culture for Monoclonal Antibody Production by Hybridoma Cells Immobilized in Macroporous Gel Particles. Biotechnol Prog 24: 1122–1131; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Pörtner R.; Platas O. B.; Fassnacht D.; Nehring D.; Czermak P.; Märkl H. Fixed Bed Reactors for the Cultivation of Mammalian Cells: Design, Performance and Scale-Up. The Open Biotechnol J 1: 41–46; 2007.

    Article  Google Scholar 

  • Raffoul T.; Swiech K.; Arantes M. K.; Sousa Á. P. B.; Mendonça R. Z.; Pereira C. A.; Suazo C. A. T. Performance Evaluation of Cho-K1 Cell in Culture Medium Supplemented with Hemolymph. Braz Arch Biol Techn 48: 85–95; 2005.

    Article  Google Scholar 

  • Rodrigues M. E.; Costa A. R.; Henriques M.; Azeredo J.; Oliveira R. Technological Progresses in Monoclonal Antibody Production Systems. Biotechnol Prog 26: 332–352; 2009.

    Google Scholar 

  • Russinova A.; Vassilev A.; Davidoff M. Localization and partial characterization of a rat ovarian granulosa cell protein with a monoclonal antibody. Biol Cell 79: 259–264; 1993.

    Article  CAS  PubMed  Google Scholar 

  • Selimoglu M.; Ayyildiz-Tamis D.; Deliloglu-Gurhan I.; Elibol M. Purification of alginate and feasible production of monoclonal antibodies by the alginate-immobilized hybridoma cells. J Biosci Bioeng 113: 233–238; 2012.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki E.; Ollis D. F. Enhanced Antibody Production at Slowed Growth Rates: Experimental Demonstration and a Simple Structured Model. Biotechnol Prog 6: 231–236; 1990.

    Article  CAS  PubMed  Google Scholar 

  • Swiech K.; da Silva G. M. C.; Zangirolami T. C.; Iemma M. R. C.; Selistre-de-Araújo H. S.; Suazo C. A. T. Evaluating kinetic and physiological features of rCHO-K1 cells cultured on microcarriers for production of a recombinant metalloprotease/disintegrin. Electron J Biotechn 10: 200–210; 2007.

    CAS  Google Scholar 

  • Tanaka A.; Kawamoto T. Cell Immobilization. In: Flickinger M. C.; Drew S. W. (eds) Encyclopedia Of Bioprocess Technology: Fermentation, Biocatalysis, and Bioseparation. John Wiley & Sons, New York, pp 505–513; 1999.

    Google Scholar 

  • Varani J.; Fligiel S. E. G.; Inman D. R.; Beals T. F.; Hillegas W. J. Modulation of adhesive properties of DEAE-dextran with laminin. J Biomed Mater Res A 29: 993–997; 1995.

    Article  CAS  Google Scholar 

  • Voigt A.; Zintl F. Hybridoma cell growth and anti-neuroblastoma monoclonal antibody production in spinner flasks using a protein-free medium with microcarriers. J Biotechnol 68: 213–226; 1999.

    Article  CAS  PubMed  Google Scholar 

  • Wagner B.; Hillegas J. M.; Brinker D. R.; Horohov D. W.; Antczak D. F. Characterization of monoclonal antibodies to equine interleukin-10 and detection of T regulatory 1 cells in horses. Vet Immunol Immunopathol 122: 57–64; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Wang M. Y.; Yang M.; Huzel N.; Butler M. Erythropoietin Production from CHO Cells Grown by Continuous Culture in a Fluidized-Bed Bioreactor. Biotechnol Bioeng 77: 192–202; 2002.

    Article  CAS  Google Scholar 

  • Warnock J and Al-Rubeai, M (2005) Production of Biologics From Animal Cell Cultures In: Nedovıć V and Wıllaert R (ed) Applications of Cell Immobilisation Biotechnology vol 8B. Springer Dordrecht, Berlin, pp 423-438

  • Xiao C.; Huang Z.; Li W.; Hu X.; Qu W.; Gao L.; Liu G. High density and scale-up cultivation of recombinant CHO cell line and hybridomas with porous microcarrier Cytopore. Cytotechnology 30: 143–147; 1999.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaji H.; Fukuda H. Continuous IgG Production by Myeloma Cells Immobilized within Porous Support Particles. J Biosci Bioeng 5: 489–49; 1997.

    Google Scholar 

  • Zhou F.; Bi J.; Zeng A.; Zhou J. Y. A macrokinetic model for myeloma cell culture based on stoichiometric balance. Biotechnol Appl Biochem 46: 85–95; 2007.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Dr. Bilge Hakan ŞEN and Dr. Tülay TÜRK from Ege University, Faculty of Dentistry for their support during the SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duygu Ayyildiz-Tamis.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayyildiz-Tamis, D., Avcı, K. & Deliloglu-Gurhan, S.I. Comparative investigation of the use of various commercial microcarriers as a substrate for culturing mammalian cells. In Vitro Cell.Dev.Biol.-Animal 50, 221–231 (2014). https://doi.org/10.1007/s11626-013-9717-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-013-9717-y

Keywords

Navigation