Skip to main content
Log in

Forced expression of indoleamine-2,3-dioxygenase in human umbilical cord-derived mesenchymal stem cells abolishes their anti-apoptotic effect on leukemia cell lines in vitro

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The ability of mesenchymal stem cells (MSCs) to preserve cancer cells potentially constitutes the adverse effect of MSC-based cell therapy in the context of hematologic malignancy. In an effort to reverse this undesirable feature of MSCs, we manipulated human umbilical cord-derived MSCs (UC-MSCs) to express indoleamine-2,3-dioxygenase (IDO), an enzyme that induces immune suppression by inhibiting T cell proliferation and triggering apoptosis in immune cells. Cultures of human UC-MSCs were generated by plastic adherence method. Full-length cDNA of human IDO was cloned into adenovirus shuttle vector. Then, the recombinant virus harboring IDO gene was produced in 293 cells and used to infect UC-MSCs. Expression of IDO protein was detected within infected UC-MSCs, and accumulation of kynurenine was observed in the supernatant. Two human leukemia cell lines, Jurkat and HL-60, were cultured on the monolayer of native or infected UC-MSCs, respectively. It was observed that forced IDO expression abolished the anti-apoptotic effect of UC-MSCs on these leukemia cells and enhanced their proliferation inhibitory effect on activated human lymphocytes as well as leukemia cells. These results suggested that equipping MSCs with IDO could be one of the reasonable strategies to reverse their cancer-supportive effect unfavorable for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Baksh D.; Yao R.; Tuan R. S. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem. Cells 25: 1384–1392; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Ball L. M.; Bernardo M. E.; Roelofs H.; Lankester A.; Cometa A.; Egeler R. M.; Locatelli F.; Fibbe W. E. Cotransplantation of ex vivo-expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood 110: 2764–2767; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Chen K.; Wang D.; Du W. T.; Han Z. B.; Ren H.; Chi Y.; Yang S. G.; Zhu D.; Bayard F.; Han Z. C. Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clin. Immunol. 135: 448–458; 2010.

    Article  PubMed  CAS  Google Scholar 

  • da Silva Meirelles L.; Chagastelles P. C.; Nardi N. B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 119: 2204–2213; 2006.

    Article  PubMed  Google Scholar 

  • Däubener W.; Wanagat N.; Pilz K.; Seghrouchni S.; Fischer H. G.; Hadding U. A new, simple, bioassay for human IFN-γ. J. Immunol. Methods 168: 39–47; 1994.

    Article  PubMed  Google Scholar 

  • Di Ianni M.; Del Papa B.; De Ioanni M.; Moretti L.; Bonifacio E.; Cecchini D.; Sportoletti P.; Falzetti F.; Tabilio A. Mesenchymal cells recruit and regulate T regulatory cells. Exp. Hematol. 36: 309–318; 2008.

    Article  PubMed  Google Scholar 

  • Fallarino F.; Grohmann U.; Vacca C.; Bianchi R.; Orabona C.; Spreca A.; Fioretti M.; Puccetti P. T cell apoptosis by tryptophan catabolism. Cell Death. Differ. 9: 1069; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Friedenstein A.; Ivanov-Smolenski A.; Chajlakjan R.; Gorskaya U.; Kuralesova A.; Latzinik N.; Gerasimow U. Origin of bone marrow stromal mechanocytes in radiochimeras and heterotopic transplants. Exp. Hematol. 6: 440; 1978.

    PubMed  CAS  Google Scholar 

  • Hodgkinson C. P.; Gomez J. A.; Mirotsou M.; Dzau V. J. Genetic engineering of mesenchymal stem cells and its application in human disease therapy. Hum. Gene Ther. 21: 1513–1526; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Konopleva M.; Konoplev S.; Hu W.; Zaritskey A.; Afanasiev B.; Andreeff M. Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leuk. Off. J. Leuk. Soc. Am. Leuk. Res. Fund UK 16: 1713; 2002.

    Article  CAS  Google Scholar 

  • Lazarus H. M.; Koc O. N.; Devine S. M.; Curtin P.; Maziarz R. T.; Holland H. K.; Shpall E. J.; McCarthy P.; Atkinson K.; Cooper B. W. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol. Blood Marrow Transplant. 11: 389–398; 2005.

    Article  PubMed  Google Scholar 

  • Le Blanc K.; Rasmusson I.; Sundberg B.; Götherström C.; Hassan M.; Uzunel M.; Ringdén O. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363: 1439–1441; 2004.

    Article  PubMed  Google Scholar 

  • Lee G. K.; Park H. J.; Macleod M.; Chandler P.; Munn D. H.; Mellor A. L. Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. Immunology 107: 452–460; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Lu L.-L.; Liu Y.-j.; Yang S.-G.; Zhao Q.-J.; Wang X.; Gong W.; Han Z.-B.; Xu Z.-S.; Lu Y.-X.; Liu D. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 91: 1017–1026; 2006.

    PubMed  CAS  Google Scholar 

  • Meisel R.; Zibert A.; Laryea M.; Gobel U.; Daubener W.; Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103: 4619–4621; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell K. E.; Weiss M. L.; Mitchell B. M.; Martin P.; Davis D.; Morales L.; Helwig B.; Beerenstrauch M.; Abou–Easa K.; Hildreth T. Matrix cells from Wharton’s jelly form neurons and glia. Stem. Cells 21: 50–60; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Nefedova Y.; Landowski T.; Dalton W. Bone marrow stromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms. Leukemia 17: 1175–1182; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Ning H.; Yang F.; Jiang M.; Hu L.; Feng K.; Zhang J.; Yu Z.; Li B.; Xu C.; Li Y. The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study. Leukemia 22: 593–599; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Nwabo Kamdje A. H.; Mosna F.; Bifari F.; Lisi V.; Bassi G.; Malpeli G.; Ricciardi M.; Perbellini O.; Scupoli M. T.; Pizzolo G.; Krampera M. Notch-3 and Notch-4 signaling rescue from apoptosis human B-ALL cells in contact with human bone marrow-derived mesenchymal stromal cells. Blood 118: 380–389; 2011.

    Article  PubMed  Google Scholar 

  • Pittenger M. F.; Mackay A. M.; Beck S. C.; Jaiswal R. K.; Douglas R.; Mosca J. D.; Moorman M. A.; Simonetti D. W.; Craig S.; Marshak D. R. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Platten M.; Ho P. P.; Youssef S.; Fontoura P.; Garren H.; Hur E. M.; Gupta R.; Lee L. Y.; Kidd B. A.; Robinson W. H. Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Sci. Signal. 310: 850; 2005.

    CAS  Google Scholar 

  • Ramasamy R.; Lam E. W.; Soeiro I.; Tisato V.; Bonnet D.; Dazzi F. Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia 21: 304–310; 2006.

    Article  PubMed  Google Scholar 

  • Sato K.; Ozaki K.; Oh I.; Meguro A.; Hatanaka K.; Nagai T.; Muroi K.; Ozawa K. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109: 228–234; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Scupoli M. T.; Perbellini O.; Krampera M.; Vinante F.; Cioffi F.; Pizzolo G. Interleukin 7 requirement for survival of T-cell acute lymphoblastic leukemia and human thymocytes on bone marrow stroma. Haematologica 92: 264–266; 2007.

    Article  PubMed  Google Scholar 

  • Spaggiari G. M.; Capobianco A.; Abdelrazik H.; Becchetti F.; Mingari M. C.; Moretta L. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111: 1327–1333; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Terness P.; Bauer T. M.; Röse L.; Dufter C.; Watzlik A.; Simon H.; Opelz G. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells mediation of suppression by tryptophan metabolites. J. Exp. Med. 196: 447–457; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Weiss M. L.; Anderson C.; Medicetty S.; Seshareddy K. B.; Weiss R. J.; VanderWerff I.; Troyer D.; McIntosh K. R. Immune properties of human umbilical cord Wharton’s jelly–derived cells. Stem Cells 26: 2865–2874; 2008.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Xianhui He (Department of Immunobiology, Jinan University, Guangzhou, China) for offering human IDO gene and Dr. Wenfeng Zhang (School of Life Science and Biopharmacology, Guangdong Pharmaceutical University, Guangzhou, China) for providing the adenovirus plasmids. This study was supported by the National Natural Science Foundation of China (grant no. 31100664).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-lin Huang.

Additional information

Editor: T. Okamoto

Yin Yuan, Xin Lu, Chang-li Tao, and Xuan Chen contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 10619 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Y., Lu, X., Tao, Cl. et al. Forced expression of indoleamine-2,3-dioxygenase in human umbilical cord-derived mesenchymal stem cells abolishes their anti-apoptotic effect on leukemia cell lines in vitro. In Vitro Cell.Dev.Biol.-Animal 49, 752–758 (2013). https://doi.org/10.1007/s11626-013-9667-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-013-9667-4

Keywords

Navigation