Skip to main content

In vitro indeterminate teleost myogenesis appears to be dependent on Pax3

Abstract

The zebrafish (Danio rerio) has been used extensively as a model system for developmental studies but, unlike most teleost fish, it grows in a determinate-like manner. A close relative, the giant danio (Devario cf. aequipinnatus), grows indeterminately, displaying both hyperplasia and hypertrophy of skeletal myofibers as an adult. To better understand adult muscle hyperplasia, a postlarval/postnatal process that closely resembles secondary myogenesis during development, we characterized the expression of Pax3/7, c-Met, syndecan-4, Myf5, MyoD1, myogenin, and myostatin during in vitro myogenesis, a technique that allows for the complete progression of myogenic precursor cells to myotubes. Pax7 appears to be expressed only in newly activated MPCs while Pax3 is expressed through most of the myogenic program, as are c-Met and syndecan-4. MyoD1 appears important in all stages of myogenesis, while Myf5 is likely expressed at low to background levels, and myogenin expression is enriched in myotubes. Myostatin, like MyoD1, appears to be ubiquitous at all stages. This is the first comprehensive report of key myogenic factor expression patterns in an indeterminate teleost, one that strongly suggests that Pax3 and/or Myf5 may be involved in the regulation of this paradigm. Further, it validates this species as a model organism for studying adult myogenesis in vitro, especially mechanisms underlying nascent myofiber recruitment.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

References

  • Alfei L.; Maggi F.; Parvopassu F.; Bertoncello G.; De Vita R. Postlarval muscle growth in fish: a DNA flow cytometric and morphometric analysis. Basic Appl Histochem 33(2): 147–158; 1989.

    PubMed  CAS  Google Scholar 

  • Allen R. E.; Sheehan S. M.; Taylor R. G.; Kendall T. L.; Rice G. M. Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. J. Cell. Physiol. 165(2): 307–312; 1995.

    PubMed  Article  CAS  Google Scholar 

  • Anastasi S.; Giordano S.; Sthandier O.; Gambarotta G.; Maione R.; Comoglio P.; Amati P. A natural hepatocyte growth factor/scatter factor autocrine loop in myoblast cells and the effect of the constitutive Met kinase activation on myogenic differentiation. J. Cell Biol. 137(5): 1057–1068; 1997.

    PubMed  Article  CAS  Google Scholar 

  • Andres V.; Walsh K. Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. J. Cell Biol. 132(4): 657–666; 1996.

    PubMed  Article  CAS  Google Scholar 

  • Beauchamp J. R.; Heslop L.; Yu D. S.; Tajbakhsh S.; Kelly R. G.; Wernig A.; Buckingham M. E.; Partridge T. A.; Zammit P. S. Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J. Cell Biol. 151(6): 1221–1234; 2000.

    PubMed  Article  CAS  Google Scholar 

  • Biga P. R.; Cain K. D.; Hardy R. W.; Schelling G. T.; Overturf K.; Roberts S. B.; Goetz F. W.; Ott T. L. Growth hormone differentially regulates muscle myostatin1 and −2 and increases circulating cortisol in rainbow trout (Oncorhynchus mykiss). Gen. Comp. Endocrinol. 138(1): 32–41; 2004.

    PubMed  Article  CAS  Google Scholar 

  • Biga P. R.; Goetz F. W. Zebrafish and giant danio as models for muscle growth: determinate vs. indeterminate growth as determined by morphometric analysis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291(5): R1327–1337; 2006.

    PubMed  Article  CAS  Google Scholar 

  • Biressi S.; Molinaro M.; Cossu G. Cellular heterogeneity during vertebrate skeletal muscle development. Dev. Biol. 308(2): 281–293; 2007.

    PubMed  Article  CAS  Google Scholar 

  • Biressi S.; Rando T. A. Heterogeneity in the muscle satellite cell population. Semin. Cell Dev. Biol. 21(8): 845–854; 2010.

    PubMed  Article  CAS  Google Scholar 

  • Bosnakovski D.; Xu Z.; Li W.; Thet S.; Cleaver O.; Perlingeiro R. C.; Kyba M. Prospective isolation of skeletal muscle stem cells with a Pax7 reporter. 3204 12: 3194; 2008.

    Google Scholar 

  • Boutet S. C.; Cheung T. H.; Quach N. L.; Liu L.; Prescott S. L.; Edalati A.; Iori K.; Rando T. A. Alternative polyadenylation mediates microRNA regulation of muscle stem cell function. Cell Stem Cell 10(3): 327–336; 2012.

    PubMed  Article  CAS  Google Scholar 

  • Bower N. I.; Johnston I. A. Paralogs of Atlantic salmon myoblast determination factor genes are distinctly regulated in proliferating and differentiating myogenic cells. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298(6): R1615–1626; 2010.

    PubMed  Article  CAS  Google Scholar 

  • Buckingham M.; Vincent S. D. Distinct and dynamic myogenic populations in the vertebrate embryo. Curr. Opin. Genet. Dev. 19(5): 444–453; 2009.

    PubMed  Article  CAS  Google Scholar 

  • Cao Y.; Kumar R. M.; Penn B. H.; Berkes C. A.; Kooperberg C.; Boyer L. A.; Young R. A.; Tapscott S. J. Global and gene-specific analyses show distinct roles for Myod and Myog at a common set of promoters. EMBO J. 25(3): 502–511; 2006.

    PubMed  Article  CAS  Google Scholar 

  • Charbonnier F.; Gaspera B. D.; Armand A. S.; Van der Laarse W. J.; Launay T.; Becker C.; Gallien C. L.; Chanoine C. Two myogenin-related genes are differentially expressed in Xenopus laevis myogenesis and differ in their ability to transactivate muscle structural genes. J. Biol. Chem. 277(2): 1139–1147; 2002.

    PubMed  Article  CAS  Google Scholar 

  • Charge S. B.; Rudnicki M. A. Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 84(1): 209–238; 2004.

    PubMed  Article  CAS  Google Scholar 

  • Codina M.; Garcia dela serrana D.; Sanchez-Gurmaches J.; Montserrat N.; Chistyakova O.; Navarro I.; Gutierrez J. Metabolic and mitogenic effects of IGF-II in rainbow trout (Oncorhynchus mykiss) myocytes in culture and the role of IGF-II in the PI3K/Akt and MAPK signalling pathways. Gen. Comp. Endocrinol. 157(2): 116–124; 2008.

    PubMed  Article  CAS  Google Scholar 

  • Collins C. A.; Olsen I.; Zammit P. S.; Heslop L.; Petrie A.; Partridge T. A.; Morgan J. E. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122(2): 289–301; 2005.

    PubMed  Article  CAS  Google Scholar 

  • Conboy I. M.; Rando T. A. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev. Cell 3(3): 397–409; 2002.

    PubMed  Article  CAS  Google Scholar 

  • Cornelison D. D.; Filla M. S.; Stanley H. M.; Rapraeger A. C.; Olwin B. B. Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Dev. Biol. 239(1): 79–94; 2001.

    PubMed  Article  CAS  Google Scholar 

  • Cornelison D. D.; Wilcox-Adelman S. A.; Goetinck P. F.; Rauvala H.; Rapraeger A. C.; Olwin B. B. Essential and separable roles for Syndecan-3 and Syndecan-4 in skeletal muscle development and regeneration. Genes Dev. 18(18): 2231–2236; 2004.

    PubMed  Article  CAS  Google Scholar 

  • Cornelison D. D.; Wold B. J. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev. Biol. 191(2): 270–283; 1997.

    PubMed  Article  CAS  Google Scholar 

  • Cossu G.; Biressi S. Satellite cells, myoblasts and other occasional myogenic progenitors: possible origin, phenotypic features and role in muscle regeneration. Semin. Cell Dev. Biol. 16(4–5): 623–631; 2005.

    PubMed  CAS  Google Scholar 

  • Coutelle O.; Blagden C. S.; Hampson R.; Halai C.; Rigby P. W.; Hughes S. M. Hedgehog signalling is required for maintenance of myf5 and myoD expression and timely terminal differentiation in zebrafish adaxial myogenesis. Dev. Biol. 236(1): 136–150; 2001.

    PubMed  Article  CAS  Google Scholar 

  • Day K.; Paterson B.; Yablonka-Reuveni Z. A distinct profile of myogenic regulatory factor detection within Pax7+ cells at S phase supports a unique role of Myf5 during posthatch chicken myogenesis. Dev. Dyn. 238(4): 1001–1009; 2009.

    PubMed  Article  CAS  Google Scholar 

  • Fauconneau B.; Paboeuf G. Effect of fasting and refeeding on in vitro muscle cell proliferation in rainbow trout (Oncorhynchus mykiss). Cell Tissue Res. 301(3): 459–463; 2000.

    PubMed  Article  CAS  Google Scholar 

  • Funkenstein B.; Balas V.; Skopal T.; Radaelli G.; Rowlerson A. Long-term culture of muscle explants from Sparus aurata. Tissue Cell 38(6): 399–415; 2006.

    PubMed  Article  CAS  Google Scholar 

  • Gayraud-Morel B.; Chretien F.; Jory A.; Sambasivan R.; Negroni E.; Flamant P.; Soubigou G.; Coppee J. Y.; Di Santo J.; Cumano A.; Mouly V.; Tajbakhsh S. Myf5 haploinsufficiency reveals distinct cell fate potentials for adult skeletal muscle stem cells. J. Cell Sci. 125(Pt 7): 1738–1749; 2012.

    PubMed  Article  CAS  Google Scholar 

  • Greenlee A.; Dodson M.; Yablonka-Reuveni Z.; Kersten C.; Cloud J. In vitro differentiation of myoblast from skeletal muscle of rainbow trout. J. Fish Biol. 46: 731–747; 1995.

    Google Scholar 

  • Halevy O.; Piestun Y.; Allouh M. Z.; Rosser B. W.; Rinkevich Y.; Reshef R.; Rozenboim I.; Wleklinski-Lee M.; Yablonka-Reuveni Z. Pattern of Pax7 expression during myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal. Dev. Dyn. 231(3): 489–502; 2004.

    PubMed  Article  CAS  Google Scholar 

  • Hawke T. J.; Garry D. J. Myogenic satellite cells: physiology to molecular biology. J. Appl. Physiol. 91(2): 534–551; 2001.

    PubMed  CAS  Google Scholar 

  • Hightower L. E.; Renfro J. L. Recent applications of fish cell culture to biomedical research. J. Exp. Zool. 248(3): 290–302; 1988.

    PubMed  Article  CAS  Google Scholar 

  • Hinits Y.; Osborn D. P.; Hughes S. M. Differential requirements for myogenic regulatory factors distinguish medial and lateral somitic, cranial and fin muscle fibre populations. Development 136(3): 403–414; 2009.

    PubMed  Article  CAS  Google Scholar 

  • Johnston I. A.; Manthri S.; Smart A.; Campbell P.; Nickell D.; Alderson R. Plasticity of muscle fibre number in seawater stages of Atlantic salmon in response to photoperiod manipulation. J. Exp. Biol. 206(Pt 19): 3425–3435; 2003.

    PubMed  Article  Google Scholar 

  • Johnston I. A.; McLay H. A.; Abercromby M.; Robins D. Phenotypic plasticity of early myogenesis and satellite cell numbers in Atlantic salmon spawning in upland and lowland tributaries of a river system. J. Exp. Biol. 203(Pt 17): 2539–2552; 2000.

    PubMed  CAS  Google Scholar 

  • Kirkpatrick L. J.; Yablonka-Reuveni Z.; Rosser B. W. Retention of Pax3 expression in satellite cells of muscle spindles. J. Histochem. Cytochem. 58(4): 317–327; 2010.

    PubMed  Article  CAS  Google Scholar 

  • Kishioka Y.; Thomas M.; Wakamatsu J.; Hattori A.; Sharma M.; Kambadur R.; Nishimura T. Decorin enhances the proliferation and differentiation of myogenic cells through suppressing myostatin activity. J. Cell. Physiol. 215(3): 856–867; 2008.

    PubMed  Article  CAS  Google Scholar 

  • Knudsen B. S.; Zhao P.; Resau J.; Cottingham S.; Gherardi E.; Xu E.; Berghuis B.; Daugherty J.; Grabinski T.; Toro J.; Giambernardi T.; Skinner R. S.; Gross M.; Hudson E.; Kort E.; Lengyel E.; Ventura A.; West R. A.; Xie Q.; Hay R.; Woude G. V.; Cao B. A novel multipurpose monoclonal antibody for evaluating human c-Met expression in preclinical and clinical settings. Appl. Immunohistochem. Mol. Morphol. 17(1): 57–67; 2009.

    PubMed  Article  CAS  Google Scholar 

  • Koumans J. T. M.; Akster H.; Dulos G.; Osse J. W. M. Myosatellite cells of Cyprinid carpio (Teleosti) in vitro: isolation, recognition, and differentiation. Cell Tissue Res. 261: 173–181; 1990.

    Article  Google Scholar 

  • Kuang S.; Kuroda K.; Le Grand F.; Rudnicki M. A. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129(5): 999–1010; 2007.

    PubMed  Article  CAS  Google Scholar 

  • Le Grand F.; Rudnicki M. A. Skeletal muscle satellite cells and adult myogenesis. Curr. Opin. Cell Biol. 19(6): 628–633; 2007.

    PubMed  Article  Google Scholar 

  • Lemischka I. The power of stem cells reconsidered? Proc. Natl. Acad. Sci. U. S. A. 96(25): 14193–14195; 1999.

    PubMed  Article  CAS  Google Scholar 

  • Lepper C.; Conway S. J.; Fan C. M. Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature 460(7255): 627–631; 2009.

    PubMed  Article  CAS  Google Scholar 

  • Levesque H. M.; Shears M. A.; Fletcher G. L.; Moon T. W. Myogenesis and muscle metabolism in juvenile Atlantic salmon (Salmo salar) made transgenic for growth hormone. J. Exp. Biol. 211(Pt 1): 128–137; 2008.

    PubMed  Article  CAS  Google Scholar 

  • Macqueen D. J.; Johnston I. A. An update on MyoD evolution in teleosts and a proposed consensus nomenclature to accommodate the tetraploidization of different vertebrate genomes. PLoS One 3(2): e1567; 2008.

    PubMed  Article  Google Scholar 

  • Matschak T. W.; Stickland N. C. The growth of Atlantic salmon (Salmo salar L.) myosatellite cells in culture at two different temperatures. Experientia 51(3): 260–266; 1995.

    PubMed  Article  CAS  Google Scholar 

  • McCroskery S.; Thomas M.; Maxwell L.; Sharma M.; Kambadur R. Myostatin negatively regulates satellite cell activation and self-renewal. J. Cell Biol. 162(6): 1135–1147; 2003.

    PubMed  Article  CAS  Google Scholar 

  • McFarlane C.; Hennebry A.; Thomas M.; Plummer E.; Ling N.; Sharma M.; Kambadur R. Myostatin signals through Pax7 to regulate satellite cell self-renewal. Exp. Cell Res. 314(2): 317–329; 2008.

    PubMed  Article  CAS  Google Scholar 

  • McFarland D. C.; Velleman S. G.; Pesall J. E.; Liu C. Effect of myostatin on turkey myogenic satellite cells and embryonic myoblasts. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 144(4): 501–508; 2006.

    PubMed  Article  Google Scholar 

  • McPherron A. C.; Lawler A. M.; Lee S. J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387(6628): 83–90; 1997.

    PubMed  Article  CAS  Google Scholar 

  • Meyer A.; Biermann C. H.; Orti G. The phylogenetic position of the zebrafish (Danio rerio), a model system in developmental biology: an invitation to the comparative method. Proc. Biol. Sci. 252(1335): 231–236; 1993.

    PubMed  Article  CAS  Google Scholar 

  • Miura T.; Kishioka Y.; Wakamatsu J.; Hattori A.; Hennebry A.; Berry C. J.; Sharma M.; Kambadur R.; Nishimura T. Decorin binds myostatin and modulates its activity to muscle cells. Biochem. Biophys. Res. Commun. 340(2): 675–680; 2006.

    PubMed  Article  CAS  Google Scholar 

  • Mommsen T. P. Paradigms of growth in fish. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 129(2–3): 207–219; 2001.

    PubMed  Article  CAS  Google Scholar 

  • Moss F. P.; Leblond C. P. Satellite cells as the source of nuclei in muscles of growing rats. Anat. Rec. 170(4): 421–435; 1971.

    PubMed  Article  CAS  Google Scholar 

  • Mulvaney D. R.; Cyrino J. E. P. Establishment of channel catfish satellite cell cultures. Basic Appl. Myol. 5(1): 65–70; 1995.

    Google Scholar 

  • Nabeshima Y.; Hanaoka K.; Hayasaka M.; Esumi E.; Li S.; Nonaka I. Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 6437: 532–535; 1993.

    Article  Google Scholar 

  • Nishimura T.; Oyama K.; Kishioka Y.; Wakamatsu J.; Hattori A. Spatiotemporal expression of decorin and myostatin during rat skeletal muscle development. Biochem. Biophys. Res. Commun. 361(4): 896–902; 2007.

    PubMed  Article  CAS  Google Scholar 

  • Nyholm M. K.; Wu S. F.; Dorsky R. I.; Grinblat Y. The zebrafish zic2a–zic5 gene pair acts downstream of canonical Wnt signaling to control cell proliferation in the developing tectum. Development 134(4): 735–746; 2007.

    PubMed  Article  CAS  Google Scholar 

  • Olguin H. C.; Olwin B. B. Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev. Biol. 275(2): 375–388; 2004.

    PubMed  Article  CAS  Google Scholar 

  • Ostbye T. K.; Bardal T.; Vegusdal A.; Frang O. T.; Kjorsvik E.; Andersen O. Molecular cloning of the Atlantic salmon activin receptor IIB cDNA—localization of the receptor and myostatin in vivo and in vitro in muscle cells. Comp. Biochem. Physiol. Part D Genomics Proteomics 2(2): 101–111; 2007.

    PubMed  Article  Google Scholar 

  • Oustanina S.; Hause G.; Braun T. Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. EMBO J. 23(16): 3430–3439; 2004.

    PubMed  Article  CAS  Google Scholar 

  • Patterson S. E.; Mook L. B.; Devoto S. H. Growth in the larval zebrafish pectoral fin and trunk musculature. Dev. Dyn. 237(2): 307–315; 2008.

    PubMed  Article  Google Scholar 

  • Relaix F.; Montarras D.; Zaffran S.; Gayraud-Morel B.; Rocancourt D.; Tajbakhsh S.; Mansouri A.; Cumano A.; Buckingham M. Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J. Cell Biol. 172(1): 91–102; 2006.

    PubMed  Article  CAS  Google Scholar 

  • Relaix F.; Rocancourt D.; Mansouri A.; Buckingham M. Divergent functions of murine Pax3 and Pax7 in limb muscle development. Genes Dev. 18(9): 1088–1105; 2004.

    PubMed  Article  CAS  Google Scholar 

  • Relaix F.; Rocancourt D.; Mansouri A.; Buckingham M. A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435(7044): 948–953; 2005.

    PubMed  Article  CAS  Google Scholar 

  • Rescan P. Y. Muscle growth patterns and regulation during fish ontogeny. Gen. Comp. Endocrinol. 142(1–2): 111–116; 2005.

    PubMed  Article  CAS  Google Scholar 

  • Rescan P. Y.; Gauvry L.; Paboeuf G. A gene with homology to myogenin is expressed in developing myotomal musculature of the rainbow trout and in vitro during the conversion of myosatellite cells to myotubes. FEBS Lett. 362(1): 89–92; 1995.

    PubMed  Article  CAS  Google Scholar 

  • Roberts S. B.; Goetz F. W. Myostatin protein and RNA transcript levels in adult and developing brook trout. Mol. Cell. Endocrinol. 210(1–2): 9–20; 2003.

    PubMed  Article  CAS  Google Scholar 

  • Sabourin L. A.; Girgis-Gabardo A.; Seale P.; Asakura A.; Rudnicki M. A. Reduced differentiation potential of primary MyoD−/− myogenic cells derived from adult skeletal muscle. J. Cell Biol. 144(4): 631–643; 1999.

    PubMed  Article  CAS  Google Scholar 

  • Scaal M.; Wiegreffe C. Somite compartments in anamniotes. Anat. Embryol. (Berl) 211 Suppl 1: 9–19; 2006.

    Google Scholar 

  • Scrable H. J.; Johnson D. K.; Rinchik E. M.; Cavenee W. K. Rhabdomyosarcoma-associated locus and MYOD1 are syntenic but separate loci on the short arm of human chromosome 11. Proc. Natl. Acad. Sci. U. S. A. 87(6): 2182–2186; 1990.

    PubMed  Article  CAS  Google Scholar 

  • Seale P.; Ishibashi J.; Scime A.; Rudnicki M. A. Pax7 is necessary and sufficient for the myogenic specification of CD45+:Sca1+ stem cells from injured muscle. PLoS Biol. 2(5): E130; 2004.

    PubMed  Article  Google Scholar 

  • Seale P.; Rudnicki M. A. A new look at the origin, function, and "stem-cell" status of muscle satellite cells. Dev. Biol. 218(2): 115–124; 2000.

    PubMed  Article  CAS  Google Scholar 

  • Seale P.; Sabourin L. A.; Girgis-Gabardo A.; Mansouri A.; Gruss P.; Rudnicki M. A. Pax7 is required for the specification of myogenic satellite cells. Cell 102(6): 777–786; 2000.

    PubMed  Article  CAS  Google Scholar 

  • Seger C.; Hargrave M.; Wang X.; Chai R. J.; Elworthy S.; Ingham P. W. Analysis of Pax7 expressing myogenic cells in zebrafish muscle development, injury, and models of disease. Dev. Dyn. 240(11): 2440–2451; 2011.

    PubMed  Article  CAS  Google Scholar 

  • Seo H. C.; Saetre B. O.; Havik B.; Ellingsen S.; Fjose A. The zebrafish Pax3 and Pax7 homologues are highly conserved, encode multiple isoforms and show dynamic segment-like expression in the developing brain. Mech. Dev. 70(1–2): 49–63; 1998.

    PubMed  Article  CAS  Google Scholar 

  • Sepich D. S.; Ho R. K.; Westerfield M. Autonomous expression of the nic1 acetylcholine receptor mutation in zebrafish muscle cells. Dev. Biol. 161(1): 84–90; 1994.

    PubMed  Article  Google Scholar 

  • Shefer G.; Van de Mark D. P.; Richardson J. B.; Yablonka-Reuveni Z. Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev. Biol. 294(1): 50–66; 2006.

    PubMed  Article  CAS  Google Scholar 

  • Sparrow J.; Hughes S. M.; Segalat L. Other model organisms for sarcomeric muscle diseases. Adv. Exp. Med. Biol. 642: 192–206; 2008.

    PubMed  Article  CAS  Google Scholar 

  • Stellabotte F.; Devoto S. H. The teleost dermomyotome. Dev. Dyn. 236(9): 2432–2443; 2007.

    PubMed  Article  CAS  Google Scholar 

  • Stellabotte F.; Dobbs-McAuliffe B.; Fernandez D. A.; Feng X.; Devoto S. H. Dynamic somite cell rearrangements lead to distinct waves of myotome growth. Development 134(7): 1253–1257; 2007.

    PubMed  Article  CAS  Google Scholar 

  • Stockdale F. E. Myogenic cell lineages. Dev. Biol. 154(2): 284–298; 1992.

    PubMed  Article  CAS  Google Scholar 

  • Tanaka K. K.; Hall J. K.; Troy A. A.; Cornelison D. D.; Majka S. M.; Olwin B. B. Syndecan-4-expressing muscle progenitor cells in the SP engraft as satellite cells during muscle regeneration. Cell Stem Cell 4(3): 217–225; 2009.

    PubMed  Article  CAS  Google Scholar 

  • Tang K. L.; Agnew M. K.; Hirt M. V.; Sado T.; Schneider L. M.; Freyhof J.; Sulaiman Z.; Swartz E.; Vidthayanon C.; Miya M.; Saitoh K.; Simons A. M.; Wood R. M.; Mayden R. L. Systematics of the subfamily Danioninae (Teleostei: Cypriniformes: Cyprinidae). Mol. Phylogenet. Evol. 57(1): 189–214; 2010.

    PubMed  Article  Google Scholar 

  • Tatsumi R.; Anderson J. E.; Nevoret C. J.; Halevy O.; Allen R. E. HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev. Biol. 194(1): 114–128; 1998.

    PubMed  Article  CAS  Google Scholar 

  • van Raamsdonk W.; van’t Veer L.; Veeken K.; te Kronnie T.; de Jager S. Fiber type differentiation in fish. Mol. Physiol. 2: 31–47; 1982.

    Google Scholar 

  • Vivien C.; Scerbo P.; Girardot F.; Le Blay K.; Demeneix B. A.; Coen L. Non-viral expression of mouse Oct4, Sox2, and Klf4 transcription factors efficiently reprograms tadpole muscle fibers in vivo. J. Biol. Chem. 287(10): 7427–7435; 2012.

    PubMed  Article  CAS  Google Scholar 

  • Wei Q.; Rong Y.; Paterson B. M. Stereotypic founder cell patterning and embryonic muscle formation in Drosophila require nautilus (MyoD) gene function. Proc. Natl. Acad. Sci. U. S. A. 104(13): 5461–5466; 2007.

    PubMed  Article  CAS  Google Scholar 

  • Yablonka-Reuveni Z.; Anderson J. E. Satellite cells from dystrophic (mdx) mice display accelerated differentiation in primary cultures and in isolated myofibers. Dev. Dyn. 235(1): 203–212; 2006.

    PubMed  Article  CAS  Google Scholar 

  • Yamada M.; Tatsumi R.; Yamanouchi K.; Hosoyama T.; Shiratsuchi S.; Sato A.; Mizunoya W.; Ikeuchi Y.; Furuse M.; Allen R. E. High concentrations of HGF inhibit skeletal muscle satellite cell proliferation in vitro by inducing expression of myostatin: a possible mechanism for reestablishing satellite cell quiescence in vivo. Am. J. Physiol. Cell Physiol. 298(3): C465–476; 2010.

    PubMed  Article  CAS  Google Scholar 

  • Young A. P.; Wagers A. J. Pax3 induces differentiation of juvenile skeletal muscle stem cells without transcriptional upregulation of canonical myogenic regulatory factors. J. Cell Sci. 123(Pt 15): 2632–2639; 2010.

    PubMed  Article  CAS  Google Scholar 

  • Zammit P. S.; Partridge T. A.; Yablonka-Reuveni Z. The skeletal muscle satellite cell: the stem cell that came in from the cold. J. Histochem. Cytochem. 54(11): 1177–1191; 2006a.

    PubMed  Article  CAS  Google Scholar 

  • Zammit P. S.; Relaix F.; Nagata Y.; Ruiz A. P.; Collins C. A.; Partridge T. A.; Beauchamp J. R. Pax7 and myogenic progression in skeletal muscle satellite cells. J. Cell Sci. 119(Pt 9): 1824–1832; 2006b.

    PubMed  Article  CAS  Google Scholar 

  • Zhu J.; Li Y.; Shen W.; Qiao C.; Ambrosio F.; Lavasani M.; Nozaki M.; Branca M. F.; Huard J. Relationships between transforming growth factor-beta1, myostatin, and decorin: implications for skeletal muscle fibrosis. J. Biol. Chem. 282(35): 25852–25863; 2007.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Drs. Josep Planas and Juan Castillo for their assistance and direction with the primary myoblast cultures, as well as Zachary Fowler, Brooke Franzen, Nathan Froehlich, Kira Marshall, Ethan Remily, and Sinibaldo Romero for their technical assistance in isolating MPCs from numerous fish. Thanks are also due to Dr. Jodie Haring, Dr. Joseph Provost, and Naomi Light for their assistance in cell imaging. Funds for this work were provided to PRB by the Center for Protease Research NIH Grant # 2P20 RR015566, NIH NIAMS Grant # R03AR055350, and NDSU Advance FORWARD NSF Grant #HRD-0811239. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peggy R. Biga.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Froehlich, J.M., Galt, N.J., Charging, M.J. et al. In vitro indeterminate teleost myogenesis appears to be dependent on Pax3. In Vitro Cell.Dev.Biol.-Animal 49, 371–385 (2013). https://doi.org/10.1007/s11626-013-9616-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-013-9616-2

Keywords

  • Myogenesis
  • Zebrafish
  • Giant danio
  • Indeterminate growth
  • Pax3