Skip to main content

Advertisement

Log in

Derivation and characterization of cell cultures from the skin of the Indo-Pacific humpback dolphin Sousa chinensis

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The marine mammalian Indo-Pacific humpback dolphin, once widely lived in waters of the Indian to western Pacific oceans, has become an endangered species. The individual number of this dolphin has significantly declined in recent decades, which raises the concern of extinction. Direct concentration on laboratorial conservation of the genetic and cell resources should be paid to this marine species. Here, we report the successful derivation of cell lines form the skin of Indo-Pacific humpback dolphin. The cell cultures displayed the characteristics of fibroblast in morphology and grew rapidly at early passages, but showed obvious growth arrest at higher passages. The karyotype of the cells consisted of 42 autosomes and sex chromosomes X and Y. The immortalized cell lines obtained by forced expression of the SV40 large T-antigen were capable of proliferation at high rate in long-term culture. Immortalization and long-term culture did not cause cytogenetically observable abnormality in the karyotype. The cell type of the primary cultures and immortalized cell lines were further characterized as fibroblasts by the specific expression of vimentin. Gene transfer experiments showed that exogenetic genes could be efficiently delivered into the cells by both plasmid transfection and lentivirus infection. The cells derived from the skin of the Indo-Pacific humpback dolphin may serve as a useful in vitro system for studies on the effects of environmental pollutants and pathogens in habitats on the dolphin animals. More importantly, because of their high proliferation rate and susceptibility to lentivirus, these cells are potential ideal materials for generation of induced pluripotent stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Bangs, C.; Donlon A. Metaphase chromosome preparation from cultured peripheral blood cells. Curr. Protoc. Hum. Genet. Chapter 4, Unit 41; 2005.

  • Ben-Nun I.; Montague S. et al. Induced pluripotent stem cells from highly endangered species. Nat. Methods 8: 829–831; 2011.

    Article  PubMed  Google Scholar 

  • Carvan M.; Flood L. et al. Effects of benzo(a)pyrene and tetrachlorodibenzo (p) dioxin on fetal dolphin kidney cells: inhibition of proliferation and initiation of DNA damage. Chemosphere 30: 187–198; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Carvan M.; Santostefano M. et al. Characterization of a bottlenose dolphin kidney (Tursiops truncatus) epithelial cell line. Mar. Mamm. Sci. 10: 52–69; 1994.

    Article  Google Scholar 

  • Dalton R. Last hope for river dolphins. Nature 440: 1096–1097; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Frere C.; Seddon J. et al. Multiple lines of evidence for an Australasian geographic boundary in the Indo-Pacific humpback dolphin (Sousa chinensis): population or species divergence? Conserv. Genet. 12: 1633–1638; 2011.

    Article  Google Scholar 

  • Hahn W.; Dessain S. et al. Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol. Cell. Biol. 22: 2111–2123; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Heinzelmann L.; Chagastelles P. et al. The karyotype of Franciscana dolphin (Pontoporia blainvillei). J. Hered. 100: 119–122; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Huang S.; Karczmarskin L. et al. Demography and population trends of the largest population of Indo-Pacific humpback dolphins. Biol. Conserv. 147: 234–242; 2012.

    Article  Google Scholar 

  • Jefferson T. Population biology of the Indo-Pacific hump-backed dolphin in Hong Kong waters. Wildl. Monogr. 144: 1–65; 2000.

    Google Scholar 

  • Karczmarski L.; Cockroft V. et al. Habitat use and preferences of Indo-Pacific humpback dolphins Sousa chinensis in Algoa Bay, South Africa. Mar. Mamm. Sci. 16: 65–79; 2000.

    Article  Google Scholar 

  • Kueper T.; Grune T. et al. Modification of vimentin: a general mechanism of nonenzymatic glycation in human skin. Ann. N. Y. Acad. Sci. 1126: 328–332; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Li Chen T.; Wise S. et al. Cytotoxicity and genotoxicity of hexavalent chromium in human and North Atlantic right whale (Eubalaena glacialis) lung cells. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 150: 487–494; 2009.

    Article  PubMed  Google Scholar 

  • Li S.; Wang D. et al. Evoked-potential audiogram of an Indo-Pacific humpback dolphin (Sousa chinensis). J. Exp. Biol. 215: 3055–3063; 2012.

    Article  PubMed  Google Scholar 

  • Lin W.; Zhou R. et al. Evolution of Sousa chinensis: a scenario based on mitochondrial DNA study. Mol. Phylogenet. Evol. 57: 907–911; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Ono M.; Murakami T. et al. Quantitative comparison of anti-fading mounting media for confocal laser scanning microscopy. J. Histochem. Cytochem. 49: 305–312; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Turvey S.; Pitman R. et al. First human-caused extinction of a cetacean species? Biol. Lett. 3: 537–540; 2007.

    Article  PubMed  Google Scholar 

  • Wang J.; Su W. et al. Establishment and characterization of fibroblast cell lines from the skin of the Yangtze finless porpoise. In Vitro Cell Dev. Biol. Anim. 47: 618–630; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Yang H.; Shi L. et al. Generation of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells. Cell 149: 605–617; 2012.

    Article  PubMed  CAS  Google Scholar 

  • Yi M.; Hong N. et al. Generation of medaka fish haploid embryonic stem cells. Science 326: 430–433; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Yi M.; Hong N. et al. Derivation and characterization of haploid embryonic stem cell cultures in medaka fish. Nat. Protoc. 5(8): 1418–1430; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Yu J.; Kindy M. et al. Establishment of epidermal cell lines derived from the skin of the Atlantic bottlenose dolphin (Tursiops truncatus). Anat. Rec. A Discov. Mol. Cell Evol. Biol. 287: 1246–1255; 2005.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ocean Park Conservation Foundation HK for assist in sample collection. The work was supported by the Sun Yat-Sen University (grant no. 42000-3281303), the National Natural Science Foundation of China (grant nos. 31271576, 41276147), the Ph.D. Programs Foundation of Ministry of Education of China (grant no. 20120171110033), and the Sousa chinensis Conservation Action Project from the Administrator of Ocean and Fisheries of Guangdong Province, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuping Wu or Meisheng Yi.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, W., Jia, K., Yang, L. et al. Derivation and characterization of cell cultures from the skin of the Indo-Pacific humpback dolphin Sousa chinensis . In Vitro Cell.Dev.Biol.-Animal 49, 449–457 (2013). https://doi.org/10.1007/s11626-013-9611-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-013-9611-7

Keywords

Navigation