Skip to main content

Advertisement

Log in

Developmental changes of BKCa channels depend on differentiation status in cultured podocytes

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The podocyte is a remarkable cell type, which encases the capillaries of the kidney glomerulus. Podocytes are of keen interests because of their key roles in kidney development and disease. Large-conductance Ca2+-activated K+ channels (BKCa channels) are important ion channels located in podocytes and play the essential role in regulating calcium homeostasis cell signaling. In this research, we studied the undergoing developmental changes of BKCa channels and their contribution to functional maturation of podocytes. Our results showed that the distribution of BKCa channels changed with the maturity of differentiation in a conditionally immortalized mouse podocyte cell line. Additionally, the increase of BKCa channel protein expression was detected by immunofluorescence staining with confocal microscopy in podocytes, which was consistent with the increase in the current density of BKCa channels examined by whole-cell patch-clamp technique. Our results suggested that the developmental changes of BKCa channels may help podocytes adapt to changes in pressure gradients occurring in physiological conditions. Those findings may have implications for understanding the physiology and development of kidney and will also serve as a baseline for future studies designed to investigate developmental changes of ion channel expression in podocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Bellardita C.; Bolzoni F.; Sorosina M.; Marfia G.; Carelli S.; Gorio A.; Formenti A. Voltage-dependent ionic channels in differentiating neural precursor cells collected from adult mouse brains six hours post-mortem. J. Neurosci. Res. 2011.

  • Chiu Y. H.; Alvarez-Baron C.; Kim E. Y.; Dryer S. E. Dominant-negative regulation of cell surface expression by a pentapeptide motif at the extreme COOH terminus of an Slo1 calcium-activated potassium channel splice variant. Mol. Pharmacol. 77: 497–507; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Drenckhahn D.; Franke R. P. Ultrastructural organization of contractile and cytoskeletal proteins in glomerular podocytes of chicken, rat, and man. Lab Invest 59: 673–682; 1988.

    PubMed  CAS  Google Scholar 

  • Dryer S. E.; Reiser J. TRPC6 channels and their binding partners in podocytes: role in glomerular filtration and pathophysiology. Am J Physiol Renal Physiol 299: F689–F701; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Estacion M.; Sinkins W. G.; Jones S. W.; Applegate M. A.; Schilling W. P. Human TRPC6 expressed in HEK 293 cells forms non-selective cation channels with limited Ca2+ permeability. J. Physiol. 572: 359–377; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Faul C.; Asanuma K.; Yanagida-Asanuma E.; Kim K.; Mundel P. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol. 17: 428–437; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Griffin S. V.; Hiromura K.; Pippin J.; Petermann A. T.; Blonski M. J.; Krofft R.; Takahashi S.; Kulkarni A. B.; Shankland S. J. Cyclin-dependent kinase 5 is a regulator of podocyte differentiation, proliferation, and morphology. Am. J. Pathol. 165: 1175–1185; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Haller H.; de Groot K.; Bahlmann F.; Elger M.; Fliser D. Stem cells and progenitor cells in renal disease. Kidney Int. 68: 1932–1936; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Husain M.; Gusella G. L.; Klotman M. E.; Gelman I. H.; Ross M. D.; Schwartz E. J.; Cara A.; Klotman P. E. HIV-1 Nef induces proliferation and anchorage-independent growth in podocytes. J. Am. Soc. Nephrol. 13: 1806–1815; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki M.; Ishiwata T.; Adachi A.; Tamura N.; Ghazizadeh M.; Kitamura H.; Sugisaki Y.; Yamanaka N.; Naito Z.; Fukuda Y. Expression of nestin in rat and human glomerular podocytes. J. Submicrosc. Cytol. Pathol. 38: 193–200; 2006.

    PubMed  CAS  Google Scholar 

  • Jefferson J. A.; Alpers C. E.; Shankland S. J. Podocyte biology for the bedside. Am J Kidney Dis 58: 835–845; 2011.

    Article  PubMed  Google Scholar 

  • Karlsen F. M.; Holstein-Rathlou N. H.; Leyssac P. P. A re-evaluation of the determinants of glomerular filtration rate. Acta Physiol Scand 155: 335–350; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Kim E. Y.; Alvarez-Baron C. P.; Dryer S. E. Canonical transient receptor potential channel (TRPC)3 and TRPC6 associate with large-conductance Ca2 + −activated K + (BKCa) channels: role in BKCa trafficking to the surface of cultured podocytes. Mol. Pharmacol. 75: 466–477; 2009a.

    Article  PubMed  CAS  Google Scholar 

  • Kim E. Y.; Chiu Y. H.; Dryer S. E. Neph1 regulates steady-state surface expression of Slo1 Ca(2+)-activated K(+) channels: different effects in embryonic neurons and podocytes. Am J Physiol Cell Physiol 297: C1379–C1388; 2009b.

    Article  PubMed  CAS  Google Scholar 

  • Kim E. Y.; Choi K. J.; Dryer S. E. Nephrin binds to the COOH terminus of a large-conductance Ca2 + −activated K + channel isoform and regulates its expression on the cell surface. Am J Physiol Renal Physiol 295: F235–F246; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Kim E. Y.; Dryer S. E. Effects of insulin and high glucose on mobilization of slo1 BKCa channels in podocytes. J. Cell. Physiol. 226: 2307–2315; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Kim E. Y.; Ridgway L. D.; Dryer S. E. Interactions with filamin A stimulate surface expression of large-conductance Ca2+−activated K+channels in the absence of direct actin binding. Mol. Pharmacol. 72: 622–630; 2007a.

    Article  PubMed  CAS  Google Scholar 

  • Kim E. Y.; Zou S.; Ridgway L. D.; Dryer S. E. Beta1-subunits increase surface expression of a large-conductance Ca2 + −activated K + channel isoform. J. Neurophysiol. 97: 3508–3516; 2007b.

    Article  PubMed  CAS  Google Scholar 

  • Kriz W. Podocyte is the major culprit accounting for the progression of chronic renal disease. Microsc. Res. Tech. 57: 189–195; 2002.

    Article  PubMed  Google Scholar 

  • Kriz W.; Hackenthal E.; Nobiling R.; Sakai T.; Elger M.; Hahnel B. A role for podocytes to counteract capillary wall distension. Kidney Int. 45: 369–376; 1994a.

    Article  PubMed  CAS  Google Scholar 

  • Kriz W.; Kretzler M.; Provoost A. P.; Shirato I. Stability and leakiness: opposing challenges to the glomerulus. Kidney Int. 49: 1570–1574; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Kriz W.; Mundel P.; Elger M. The contractile apparatus of podocytes is arranged to counteract GBM expansion. Contrib. Nephrol. 107: 1–9; 1994b.

    PubMed  CAS  Google Scholar 

  • Krtil J.; Platenik J.; Kazderova M.; Tesar V.; Zima T. Culture methods of glomerular podocytes. Kidney Blood Press Res 30: 162–174; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Leapley A. C.; Lee C. C.; Batchelder C. A.; Yoder M. C.; Matsell D. G.; Tarantal A. F. Characterization and culture of fetal rhesus monkey renal cortical cells. Pediatr. Res. 66: 448–454; 2009.

    Article  PubMed  Google Scholar 

  • Lu R.; Alioua A.; Kumar Y.; Eghbali M.; Stefani E.; Toro L. MaxiK channel partners: physiological impact. J. Physiol. 570: 65–72; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Morton M. J.; Hutchinson K.; Mathieson P. W.; Witherden I. R.; Saleem M. A.; Hunter M. Human podocytes possess a stretch-sensitive, Ca2 + −activated K + channel: potential implications for the control of glomerular filtration. J. Am. Soc. Nephrol. 15: 2981–2987; 2004.

    Article  PubMed  Google Scholar 

  • Mundel P.; Gilbert P.; Kriz W. Podocytes in glomerulus of rat kidney express a characteristic 44 KD protein. J. Histochem. Cytochem. 39: 1047–1056; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Mundel P.; Reiser J.; Kriz W. Induction of differentiation in cultured rat and human podocytes. J. Am. Soc. Nephrol. 8: 697–705; 1997.

    PubMed  CAS  Google Scholar 

  • Pavenstadt H.; Kriz W.; Kretzler M. Cell biology of the glomerular podocyte. Physiol. Rev. 83: 253–307; 2003.

    PubMed  CAS  Google Scholar 

  • Peti-Peterdi J. Calcium wave of tubuloglomerular feedback. Am J Physiol Renal Physiol 291: F473–F480; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Quaggin S. E.; Kreidberg J. A. Development of the renal glomerulus: good neighbors and good fences. Development 135: 609–620; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Ridgway L. D.; Kim E. Y.; Dryer S. E. MAGI-1 interacts with Slo1 channel proteins and suppresses Slo1 expression on the cell surface. Am J Physiol Cell Physiol 297: C55–C65; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Saleem M. A.; Zavadil J.; Bailly M.; McGee K.; Witherden I. R.; Pavenstadt H.; Hsu H.; Sanday J.; Satchell S. C.; Lennon R.; Ni L.; Bottinger E. P.; Mundel P.; Mathieson P. W. The molecular and functional phenotype of glomerular podocytes reveals key features of contractile smooth muscle cells. Am J Physiol Renal Physiol 295: F959–F970; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Schiffer M.; Bitzer M.; Roberts I. S.; Kopp J. B.; ten Dijke P.; Mundel P.; Bottinger E. P. Apoptosis in podocytes induced by TGF-beta and Smad7. J. Clin. Invest. 108: 807–816; 2001.

    PubMed  CAS  Google Scholar 

  • Schiffer M.; Mundel P.; Shaw A. S.; Bottinger E. P. A novel role for the adaptor molecule CD2-associated protein in transforming growth factor-beta-induced apoptosis. J. Biol. Chem. 279: 37004–37012; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Shankland S. J.; Pippin J. W.; Reiser J.; Mundel P. Podocytes in culture: past, present, and future. Kidney Int. 72: 26–36; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Vallon V.; Platt K. A.; Cunard R.; Schroth J.; Whaley J.; Thomson S. C.; Koepsell H.; Rieg T. SGLT2 mediates glucose reabsorption in the early proximal tubule. J. Am. Soc. Nephrol. 22: 104–112; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Vaughan M. R.; Pippin J. W.; Griffin S. V.; Krofft R.; Fleet M.; Haseley L.; Shankland S. J. ATRA induces podocyte differentiation and alters nephrin and podocin expression in vitro and in vivo. Kidney Int. 68: 133–144; 2005.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant from the National Basic Research Program of China (2011CB944003) and the National Natural Science Foundation of China (31271074). And we would like to thank Prof. Peter Mundel for his podocyte cell line.

Conflict of interests

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Yang.

Additional information

Editor: T. Okamoto

Jiajia Yang and Pengjuan Xu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Xu, P., Xie, Y. et al. Developmental changes of BKCa channels depend on differentiation status in cultured podocytes. In Vitro Cell.Dev.Biol.-Animal 49, 205–211 (2013). https://doi.org/10.1007/s11626-013-9590-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-013-9590-8

Keywords

Navigation