Skip to main content
Log in

The cell sorting process of Xenopus gastrula cells involves the acto-myosin system and TGF-β signaling

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

We have previously shown that the cell sorting process of animal pole cells (AC) and vegetal pole cells (VC) from Xenopus gastrulae is considered to involve two steps: concentrification and polarization. In this study, we addressed the question of what specified the spatial relationship of the AC and VC clusters during the process. First, we examined the inhibitory or facilitatory treatment for myosin 2 activity during each of the two steps. The aggregates treated with Y27632 or blebbistatin during the concentrification step showed a cluster random arrangement, suggesting the prevention of the cell sorting by inhibition of myosin 2. Meanwhile, the treatment with a Rac1 inhibitor, NSC23766, during the same step resulted in promotion of the fusion of the AC clusters and the progression of the cell sorting, presumably by an indirect activation of myosin 2. On the other hand, the treatments with any of the three drugs during the polarization step showed that the two clusters did not appose, and their array remained concentric. Thus, the modulation of cell contraction might be indispensable to each of the two steps. Next, the activin/nodal TGF-β signaling was perturbed by using a specific activin receptor-like kinase inhibitor, SB431542. The results revealed a bimodal participation of the activin/nodal TGF-β signaling, i.e., suppressive and promotive effects on the concentrification and the polarization, respectively. Thus, the present in vitro system, which permits not only the cell contraction-mediated cell sorting but also the TGF-β-directed mesodermal induction such as cartilage formation, may fairly reflect the embryogenesis in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Agius E.; Oelgeschlager M.; Wessely O.; Kemp C.; De Robertis E. M. Endodermal nodal-related signals and mesodermal induction in Xenopus. Development 127: 1173–1183; 2000.

    PubMed  CAS  Google Scholar 

  • Asashima M.; Nakano H.; Uchiyama H.; Sugino H.; Nakamura T.; Eto Y.; Ejima D.; Nishimatsu S.; Uen N.; Kinoshita K. Presence of activin (erythroid differentiation factor) in infertilized eggs and blastulae of Xenopus laevis. Proc. Natl. Acad. Sci. U. S. A. 88(15): 6511–6514; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Birsoy B.; Kofron M.; Schaible K.; Wylie C.; Heasman J. Vg 1 is an essential signaling molecule in Xenopus development. Development 133(1): 15–20; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Chauhan B. K.; Lou M.; Zheng Y.; Lang R. A. Balanced Rac1 and RhoA activities regulate cell shape and drive invagination morphogenesis in epithelia. Proc. Natl. Acad. Sci. U. S. A. 108(45): 18289–18294; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Chen Y.; Whitaker L. L.; Ramsdell A. F. Developmental analysis of activin-like kinase receptor-4 (ALK4) expression in Xenopus laevis. Dev. Dyn. 232(2): 393–398; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Davis G. S.; Phillips H. M.; Steinberg M. S. Germ-layer surface tensions and “tissue affinities” in Rana pipiens gastrulae: quantitative measurements. Dev. Biol. 192(2): 630–644; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Foty R. A.; Pfleger C. M.; Forgacs G.; Steinberg M. S. Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development 122(5): 1611–1620; 1996.

    PubMed  CAS  Google Scholar 

  • Foty R. A.; Steinberg M. S. Cadherin-mediated cell-cell adhesion and tissue segregation in relation to malignancy. Int. J. Dev. Biol. 48(5–6): 397–409; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Foty R. A.; Steinberg M. S. The differential adhesion hypothesis: a direct evaluation. Dev. Biol. 278(1): 255–263; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Fukui Y.; Furue M.; Myoishi Y.; Sato J. D.; Okamoto T.; Asashima M. Long-term culture of Xenopus presumptive ectoderm in a nutrient-supplemented culture medium. Dev Growth Differ 45(5–6): 499–506; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Furue M.; Myoishi Y.; Fukui Y.; Ariizumi T.; Okamoto T.; Asashima M. Activin A induces craniofacial cartilage from undifferentiated Xenopus ectoderm in vitro. Proc. Natl. Acad. Sci. U. S. A. 99(24): 15474–15479; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Green J. B. Sophistications of cell sorting. Nat Cell Biol 10(4): 375–377; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Harris A. K. Is cell sorting caused by differences in the work of intercellular adhesion? A critique of the Steinberg hypothesis. J. Theor. Biol. 61(2): 267–285; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Harland R. M. In situ hybridization: An improved whole mount method for Xenopus embryos. Methods Cell Biol 36: 685–695; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Ho D. M.; Chan J.; Bayliss P.; Whitman M. Inhibitor-resistant type I receptors reveal specific requirements for TGF-beta signaling in vivo. Dev. Biol. 295(2): 730–742; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Inman G. J.; Nicolas F.; Callahan J. F.; Harling J. D.; Gaster L. M.; Reith A. D.; Laping N. J.; Hill C. S. SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol. Pharmacol. 62(1): 65–74; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Kovacs M.; Toth J.; Hetenyi C.; Malnasi-Csizmadia A.; Sellers J. R. Mechanism of blebbistatin inhibition of myosin II. J. Biol. Chem. 279(34): 35557–35563; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Krieg M.; Arboleda-Estudillo Y.; Puech P. H.; Kafer J.; Graner F.; Muller D. J.; Heisenberg C. P. Tensile forces govern germ-layer organization in zebrafish. Nat Cell Biol 10(4): 429–436; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Lecuit T.; Lenne P. F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat. Rev. Mol. Cell Biol. 8(8): 633–644; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Lee S. Y.; Lim S. K.; Cha S. W.; Yoon J.; Lee S. H.; Lee H. S.; Park J. B.; Lee J. Y.; Kim S. C.; Kim J. Inhibition of FGF signaling converts dorsal mesoderm to ventral mesoderm in early Xenopus embryos. Differentiation 82(2): 99–107; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Lindley L. E.; Briegel K. J. Molecular characterization of TGFbeta-induced epithelial-mesenchymal transition in normal finite lifespan human mammary epithelial cells. Biochem. Biophys. Res. Commun. 399(4): 659–664; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Luxardi G.; Marchal L.; Thome V.; Kodjabachian L. Distinct Xenopus Nodal ligands sequentially induce mesendoderm and control gastrulation movements in parallel to the Wnt/PCP pathway. Development 137(3): 417–426; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Manning M. L.; Foty R. A.; Steinberg M. S.; Schoetz E. M. Coaction of intercellular adhesion and cortical tension specifies tissue surface tension. Proc. Natl. Acad. Sci. U. S. A. 107(28): 12517–12522; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop P. D. The formation of the mesoderm in Urodelean amphibians I. Induction by the endoderm. Roux’ Arch. f. Entw. Mech. 162: 34–373; 1969.

    Google Scholar 

  • Nieuwkoop R. D.; Faber J. Normal Table of Xenopus laevis (Daudin). North-Holland Publishing Company, Amsterdam; 1956.

    Google Scholar 

  • Nose A.; Nagafuchi A.; Takeichi M. Expressed recombinant cadherins mediate cell sorting in model systems. Cell 54(7): 993–1001; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Ogata S.; Morokuma J.; Hayata T.; Kolle G.; Niehrs C.; Ueno N.; Cho K. W. TGF-beta signaling-mediated morphogenesis: modulation of cell adhesion via cadherin endocytosis. Genes Dev. 21(14): 1817–1831; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Okabayashi K.; Asashima M. Tissue generation from amphibian animal caps. Curr. Opin. Genet. Dev. 13(5): 502–507; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Papadimitriou E.; Kardassis D.; Moustakas A.; Stournaras C. TGFbeta-induced early activation of the small GTPase RhoA is Smad2/3-independent and involves Src and the guanine nucleotide exchange factor Vav2. Cell. Physiol. Biochem. 28(2): 229–238; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Pellegrin S.; Mellor H. Actin stress fibres. J Cell Sci 120(Pt 20): 3491–3499; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Ramos J. W.; Desimone D. W. Xenopus embryonic cell adhesion to fibronectin: position-specific activation of RGD/synergy site-dependent migratory behavior at gastrulation. J Cell Biol 134(1): 227–240; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Shewan A. M.; Maddugoda M.; Kraemer A.; Stehbens S. J.; Verma S.; Kovacs E. M.; Yap A. S. Myosin 2 is a key Rho kinase target necessary for the local concentration of E-cadherin at cell-cell contacts. Mol Biol Cell 16(10): 4531–4542; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Sive H. L.; Grainger R. M.; Harland R. M. Early development of Xenopus laevis: A laboratory Manual. Cold Spring Harbor Laboratory Press, New York; 1998.

    Google Scholar 

  • Steinberg M. S. Differential adhesion in morphogenesis: a modern view. Curr. Opin. Genet. Dev. 17(4): 281–286; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S.; Yokota C.; Takano K.; Tanegashima K.; Onuma Y.; Goto J.; Asashima M. Two novel nodal-related genes initiate early inductive events in Xenopus Nieuwkoop center. Development 127(24): 5319–5329; 2000.

    PubMed  CAS  Google Scholar 

  • Takeichi M. The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development 102(4): 639–655; 1988.

    PubMed  CAS  Google Scholar 

  • Townes P. L.; Holtfreter J. Directed movements and selective adhesion of embryonic amphibian cells. J. Exptl. Zool. 128: 53–120; 1955.

    Article  Google Scholar 

  • Xu S. W.; Liu S.; Eastwood M.; Sonnylal S.; Denton C. P.; Abraham D. J.; Leask A. Rac inhibition reverses the phenotype of fibrotic fibroblasts. PLoS One 4(10): e7438; 2009.

    Article  PubMed  Google Scholar 

  • Zhong Y.; Brieher W. M.; Gumbiner B. M. Analysis of C-cadherin regulation during tissue morphogenesis with an activating antibody. J Cell Biol 144(2): 351–359; 1999.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the members of our morphogenesis laboratories for their valuable discussions in weekly seminars. We thank Dr. Desimone DW for the generous gift of anti-fibronectin monoclonal antibody and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Setsunosuke Ihara.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harata, A., Matsuzaki, T., Nishikawa, A. et al. The cell sorting process of Xenopus gastrula cells involves the acto-myosin system and TGF-β signaling. In Vitro Cell.Dev.Biol.-Animal 49, 220–229 (2013). https://doi.org/10.1007/s11626-013-9586-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-013-9586-4

Keywords

Navigation