Skip to main content

Advertisement

Log in

Establishment and characterization of a tamoxifen-mediated reversible immortalized mouse dental papilla cell line

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Odontoblasts are a type of non-proliferating and terminally differentiated cells that play an important role in the pulpo–dentinal complex. Mouse dental papilla cells (mDPCs), which can differentiate into odontoblast-like cells in vitro, have a limited life span. We combined the traditional strategy of “Cre/LoxP-based reversible immortalization” with a tamoxifen-regulated Cre recombination system to generate a tamoxifen-mediated reversibly immortalized mouse dental papilla cell line, mDPCET. mDPCs were sequentially transduced with a floxed SV40 T antigen-TK (SV40Tag-TK) and an ERT2CreERT2-expressing plasmid. Clonal-isolated SV40Tag- and Cre-positive cells showed modified growth characteristics and a significantly extended life span. When mDPCET cells were treated with 4-hydroxytamoxifen, ERT2CreERT2 translocated from the cytoplasm to the nucleus and caused the excision of SV40Tag-TK, which led to the reversion of mDPCETs. After the immortalization was reversed, the cells underwent replicative senescence and transitioned into a more differentiated state. Tamoxifen-mediated reversible immortalization, therefore, allows for the expansion of primary mDPCs, leads to the production of odontoblast-like cells that retain most odontoblast-specific properties, and can represent a safe and ready-to-use method due to its simple manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Ali S. H.; DeCaprio J. A. Cellular transformation by SV40 large T antigen: interaction with host proteins. Semin Cancer Biol 11: 15–23; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Begue-Kirn C.; Ruch J. V.; Ridall A. L.; Butler W. T. Comparative analysis of mouse DSP and DPP expression in odontoblasts, preameloblasts, and experimentally induced odontoblast-like cells. Eur J Oral Sci 106(Suppl 1): 254–259; 1998.

    PubMed  CAS  Google Scholar 

  • Cantalupo P. G.; Saenz-Robles M. T.; Rathi A. V.; Beerman R. W.; Patterson W. H.; Whitehead R. H.; Pipas J. M. Cell-type specific regulation of gene expression by simian virus 40 T antigens. Virology 386: 183–191; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Dimri G. P.; Lee X.; Basile G.; Acosta M.; Scott G.; Roskelley C.; Medrano E. E.; Linskens M.; Rubelj I.; Pereira-Smith O. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92: 9363–9367; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Fisher L. W.; Fedarko N. S. Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect Tissue Res 44(Suppl 1): 33–40; 2003.

    PubMed  CAS  Google Scholar 

  • Fujita S.; Hideshima K.; Ikeda T. Nestin expression in odontoblasts and odontogenic ectomesenchymal tissue of odontogenic tumours. J Clin Pathol 59: 240–245; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Kamata N.; Fujimoto R.; Tomonari M.; Taki M.; Nagayama M.; Yasumoto S. Immortalization of human dental papilla, dental pulp, periodontal ligament cells and gingival fibroblasts by telomerase reverse transcriptase. J Oral Pathol Med 33: 417–423; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Kowolik C. M.; Liang S.; Yu Y.; Yee J. K. Cre-mediated reversible immortalization of human renal proximal tubular epithelial cells. Oncogene 23: 5950–5957; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Lin H.; Xu L.; Liu H.; Sun Q.; Chen Z.; Yuan G. KLF4 promotes the odontoblastic differentiation of human dental pulp cells. J Endod 37: 948–954; 2011.

    Article  PubMed  Google Scholar 

  • MacDougall M.; Thiemann F.; Ta H.; Hsu P.; Chen L. S.; Snead M. L. Temperature sensitive simian virus 40 large T antigen immortalization of murine odontoblast cell cultures: establishment of clonal odontoblast cell line. Connect Tissue Res 33: 97–103; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda T.; Cepko C. L. Controlled expression of transgenes introduced by in vivo electroporation. Proc Natl Acad Sci U S A 104: 1027–1032; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Naldini L.; Blomer U.; Gage F. H.; Trono D.; Verma I. M. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci U S A 93: 11382–11388; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Narayanan K.; Srinivas R.; Ramachandran A.; Hao J.; Quinn B.; George A. Differentiation of embryonic mesenchymal cells to odontoblast-like cells by overexpression of dentin matrix protein 1. Proc Natl Acad Sci U S A 98: 4516–4521; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Salmon P.; Oberholzer J.; Occhiodoro T.; Morel P.; Lou J.; Trono D. Reversible immortalization of human primary cells by lentivector-mediated transfer of specific genes. Mol Ther 2: 404–414; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Struys T.; Krage T.; Vandenabeele F.; Raab W. H.; Lambrichts I. Immunohistochemical evidence for proteolipid protein and nestin expression in the late bell stage of developing rodent teeth. Arch Oral Biol 50: 171–174; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan C. S.; Pipas J. M. T antigens of simian virus 40: molecular chaperones for viral replication and tumorigenesis. Microbiol Mol Biol Rev 66: 179–202; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Thenet S.; Benya P. D.; Demignot S.; Feunteun J.; Adolphe M. SV40-immortalization of rabbit articular chondrocytes: alteration of differentiated functions. J Cell Physiol 150: 158–167; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Thonemann B.; Schmalz G. Immortalization of bovine dental papilla cells with simian virus 40 large T antigen. Arch Oral Biol 45: 857–869; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Westerman K. A.; Leboulch P. Reversible immortalization of mammalian cells mediated by retroviral transfer and site-specific recombination. Proc Natl Acad Sci U S A 93: 8971–8976; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Wu H. L.; Wang Y.; Zhang P.; Li S. F.; Chen X.; Chen Y. K.; Li J. G.; Yang S. M.; Su Y. P.; Wang J. P.; Chen B. Reversible immortalization of rat pancreatic beta cells with a novel immortalizing and tamoxifen-mediated self-recombination tricistronic vector. J Biotechnol 151: 231–241; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Wu L. A.; Feng J.; Wang L.; Mu Y. D.; Baker A.; Donly K. J.; Gluhak-Heinrich J.; Harris S. E.; MacDougall M.; Chen S. Immortalized mouse floxed Bmp2 dental papilla mesenchymal cell lines preserve odontoblastic phenotype and respond to BMP2. J Cell Physiol 225: 132–139; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Yu J. H.; Shi J. N.; Deng Z. H.; Zhuang H.; Nie X.; Wang R. N.; Jin Y. Cell pellets from dental papillae can reexhibit dental morphogenesis and dentinogenesis. Biochem Biophys Res Commun 346: 116–124; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y.; Nuglozeh E.; Toure F.; Schmidt A. M.; Vunjak-Novakovic G. Controllable expansion of primary cardiomyocytes by reversible immortalization. Hum Gene Ther 20: 1687–1696; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Zhu F.; Nie R. R.; Wu L.; Liu L.; Tang W.; Tian W. D. [Spontaneous odontogenic differentiation and critical gene expression of mouse dental papilla mesenchymal cell in vitro]. Sichuan Da Xue Xue Bao Yi Xue Ban 39: 289–297; 2008.

    Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Didier Trono, Department of Genetics and Microbiology and Division of Surgical Research, CMU, Geneva, Switzerland, for providing us with the retroviral vector HLox.CMV.TAG.IRES.TK. This work was supported by The National Natural Science Foundation of China (no. 30872880, no. 81070797), the National 973 project of China (no. 2010CB534915), and the PhD Candidates Self-research (Including 1 + 4) Program of Wuhan University in 2010 (no. 20103040101000162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Chen.

Additional information

Editor: T. Okamoto

Heng Lin and Huan Liu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

DMP1 and DSP expression level in different colonies that isolated from SV40 Tag transfected mDPC and ERT2CreERT2 transfected mDPC6T. (A) Eight clones isolated from SV40 Tag transfected mDPC were designated as C1-C8. (B) Eight clones isolated from ERT2CreERT2 transfected mDPC6T were designated as E1–E8. Western blot was applied to detect the expression level of DMP1 and DSP in these clones. β-actin was used as the normalization control. (JPEG 0 kb)

High Resolution Image (TIFF 527 kb)

ESM 2

Karyotype analysis and tumorigenesis assay of mDPC6Ts and mDPCETs. mDPC6Ts (A) and mDPCETs (B) both showed normal karyotypes and chromosome numbers, with no mutation. Tumorigenesis of mDPC6Ts and mDPCETs. Tumors were formed 4 wk after ACC was inoculated subcutaneously into SCID mice (C). Neither the mDPC6T (D) nor mDPCET (E) group showed signs of tumor formation 12 wk after cell inoculation. (JPEG 25 kb)

High Resolution Image (TIFF 2298 kb)

ESM 3

Senescence-specific β-galactoside staining of mDPCETs at Passage 40 and the reverted cells that acquired from these cells. mDPCETs at passage 40 were treated with 4-OH and GCV to acquire the reverted cell. The reverted cells stopped proliferating after 4 more PDL and cell senescence were detected by Senescence-specific β-galactoside staining methods. (JPEG 40 kb)

High Resolution Image (TIFF 3543 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, H., Liu, H., Sun, Q. et al. Establishment and characterization of a tamoxifen-mediated reversible immortalized mouse dental papilla cell line. In Vitro Cell.Dev.Biol.-Animal 49, 114–121 (2013). https://doi.org/10.1007/s11626-012-9576-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-012-9576-y

Keywords

Navigation