Advertisement

Impact of gonadotropin supplementation on the expression of germ cell marker genes (MATER, ZAR1, GDF9, and BMP15) during in vitro maturation of buffalo (Bubalus bubalis) oocyte

  • Amar Nath
  • Veena Sharma
  • Pawan K. Dubey
  • Pratheesh M. D.
  • Nitin E. Gade
  • G. Saikumar
  • G. Taru Sharma
Article

Abstract

The present study was designed to investigate whether gonadotropins [follicle-stimulating hormone (FSH) and luteinizing hormone (LH)] and buffalo follicular fluid (bFF) supplementation in maturation medium influences the transcript abundance of germ cell marker genes [maternal antigen that embryos require (MATER), Zygote arrest 1 (ZAR1), growth differentiation factor 9 (GDF9), and bone morphogenetic protein 15 (BMP15)] mRNA in buffalo (Bubalus bubalis) oocytes. Buffalo ovaries were collected from local abattoir, oocytes were aspirated from antral follicles (5–8 mm) and matured in vitro using two different maturation regimens, viz, group A: gonadotropin (FSH and LH) and group B: non-gonadotropin-supplemented maturation medium containing 20% buffalo follicular fluid (bFF). mRNA was isolated from immature (330) and in vitro matured oocytes from both the groups (A, 320; B, 340), and reverse transcribed using Moloney murine leukemia virus reverse transcriptase. Expression levels of MATER, ZAR1, GDF9, and BMP15 mRNA transcripts were analyzed in oocytes of both maturation groups as well as immature oocytes using real-time PCR. QPCR results showed that GDF9 and BMP15 transcripts were significantly (p < 0.05) influenced with gonadotropins and bFF supplementation during in vitro maturation of buffalo oocyte; however, MATER and ZAR1 transcripts were not influenced with gonadotropins and bFF supplementation in vitro. These results indicated that the expression levels of MATER, ZAR1, GDF9, and BMP15 mRNA were varied differentially during in vitro maturation of buffalo oocyte and were found to be gonadotropins (FSH and LH) or bFF dependent for GDF9 and BMP15.

Keywords

Buffalo Gonadotropin Germ cell markers Expression qRT-PCR 

Notes

Acknowledgments

This research work was financially supported by NFBSFARA, Indian Council of Agriculture Research, New Delhi, Government of India.

Conflict of interest

The authors indicate no conflicts of interest.

References

  1. Aaltonen J.; Laitinen M. P.; Vuojolainen K.; Jaatinen R.; Horelli-Kuitunen N.; Seppa L.; Louhio H.; Tuuri T.; Sjoberg J.; Butzow R.; Hovata O.; Dale L.; Ritvos O. Human growth differentiation factor 9 (GDF-9) and its novel homolog GDF-9B are expressed in oocytes during early folliculogenesis. J. Clin. Endocrinol. Metab. 84: 2744–2750; 1999.PubMedCrossRefGoogle Scholar
  2. Avery B.; Strobech L.; Jacobsen T.; Bogh B. I.; Greve T. In vitro maturation of bovine cumulus oocyte complexes in undiluted follicular fluid: effect on nuclear maturation, pronucleus formation and embryo development. Theriogenology 59: 987–999; 2003.PubMedCrossRefGoogle Scholar
  3. Ayalon D.; Tsafriri A.; Lindner H. R.; Cordova T.; Harell A. Serum gonadotrophin levels in pro-oestrous rats in relation to the resumption of meiosis by the oocytes. J. Reprod. Fertil. 31: 51–58; 1972.PubMedCrossRefGoogle Scholar
  4. Byskov A. G.; Yding A. C.; Hossaini A.; Guoliang X. Cumulus cells of oocyte-cumulus complexes secrete a meiosis-activating substance when stimulated with FSH. Mol. Reprod. Dev. 46: 296–305; 1997.PubMedCrossRefGoogle Scholar
  5. Cetica P. D.; Dalvit G. C.; Beconi M. T. Study of evaluation criteria used for in vitro bovine oocyte selection and maturation. Biocell 23(2): 125–133; 1999.PubMedGoogle Scholar
  6. Chang H.; Brown C. W.; Matzuk M. M. Genetic analysis of the mammalian transforming growth factor-β superfamily. Endocr. Rev. 23: 787–823; 2002.PubMedCrossRefGoogle Scholar
  7. Dade S.; Callebaut I.; Mermillod P.; Monget P. Identification of a new expanding family of genes characterized by atypical LRR domains. Localization of a cluster preferentially expressed in oocyte. FEBS Lett. 555: 533–538; 2003.PubMedCrossRefGoogle Scholar
  8. Dube J. L.; Wang P.; Elvin J.; Lyons K. M.; Celeste A. J.; Matzuk M. M. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol. Endocrinol. 12: 1809–1817; 1998.PubMedCrossRefGoogle Scholar
  9. Elvin J. A.; Clark A. T.; Wang P.; Wolfman N. M.; Matzuk M. M. Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol. Endocrinol. 13: 1035–1048; 1999.PubMedCrossRefGoogle Scholar
  10. Gosden R. G. Oogenesis as a foundation for embryogenesis. Mol. Cell. Endocrinol. 186: 149–153; 2002.PubMedCrossRefGoogle Scholar
  11. Goto T.; Jones G. M.; Lolatgis N.; Pera M. F.; Trounson A. O.; Monk M. Identification and characterisation of known and novel transcripts expressed during the final stages of human oocyte maturation. Mol. Reprod. Dev. 62: 13–28; 2002.PubMedCrossRefGoogle Scholar
  12. Hamatani T.; Carter M. G.; Sharov A. A.; Ko M. S. Dynamics of global gene expression changes during mouse preimplantation development. Dev. Cell. 6: 117–131; 2004.PubMedCrossRefGoogle Scholar
  13. Hassold T.; Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2: 280–291; 2001.PubMedCrossRefGoogle Scholar
  14. Ho Y.; Wigglesworth K.; Eppig J. J.; Schultz R. M. Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol. Reprod. Dev. 41: 232–238; 1995.PubMedCrossRefGoogle Scholar
  15. Juengel J. L.; Hudson N. L.; Heath D. A.; Smith P.; Reader K. L.; Lawrence S. B.; O’Connell A. R.; Laitinen M. P. E.; Cranfield M.; Groome N. P.; Ritvos O.; McNatty K. P. Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep. Biol. Reprod. 67: 1777–1789; 2002.PubMedCrossRefGoogle Scholar
  16. Lee H. S.; Seo Y. I.; Yin X. J.; Cho S. G.; Lee S. S.; Kim N. H. Effect of follicle stimulation hormone and luteinizing hormone on cumulus cell expansion and in vitro nuclear maturation of canine oocytes. Reprod. Domest. Anim. 42: 561–565; 2007.PubMedCrossRefGoogle Scholar
  17. Li Y.; Feng H. L.; Cao Y. J.; Zheng G. J.; Yang Y.; Mullen S. Confocal microscopic analysis of the spindle and chromosome configurations of human oocytes matured in vitro. Fertil. Steril. 85: 827–832; 2006.PubMedCrossRefGoogle Scholar
  18. Luvoni G. C.; Chigioni S.; Allievi E.; Macis D. Factors involved in vivo and in vitro maturation of canine oocytes. Theriogenology 63(1): 41–59; 2005.PubMedCrossRefGoogle Scholar
  19. Lyons K. M.; Pelton R. W.; Hogan B. L. Patterns of expression of murine Vgr-1 and BMP-2a RNA suggest that transforming growth factor-beta-like genes coordinately regulate aspects of embryonic development. Genes Dev. 3: 1657–1668; 1989.PubMedCrossRefGoogle Scholar
  20. Mattioli M. Transduction mechanisms for gonadotropin-induced oocyte maturation in mammals. Zygote 2: 347–349; 1994.PubMedCrossRefGoogle Scholar
  21. Mattioli M.; Bacci M. L.; Galeati G.; Seren E. Effects of LH and FSH on the maturation of pig oocytes in vitro. Theriogenology 36: 95–105; 1991.PubMedCrossRefGoogle Scholar
  22. McGrath S. A.; Esquela A. F.; Lee S. J. Oocyte-specific expression of growth/differentiation factor-9. Mol. Endocrinol. 9: 131–136; 1995.PubMedCrossRefGoogle Scholar
  23. McKenzie L. J.; Pangas S. A.; Carson S. A.; Kovanci E.; Cisneros P.; Buster J. E.; Amato P.; Matzuk M. M. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum. Reprod. 19: 2869–2874; 2004.PubMedCrossRefGoogle Scholar
  24. McPherron A. C.; Lee S. J. GDF-3 and GDF-9: two new members of the transforming growth factor-beta superfamily containing a novel pattern of cysteines. J. Biol. Chem. 268: 3444–3449; 1993.PubMedGoogle Scholar
  25. Niemann H.; Wrenzycki C. Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development. Theriogenology 53: 21–34; 2000.PubMedCrossRefGoogle Scholar
  26. Otsuka F.; Yamamoto S.; Erickson G. F.; Shimasaki S. Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH receptor expression. J. Biol. Chem. 276: 11387–11392; 2001.PubMedCrossRefGoogle Scholar
  27. Pennetier S.; Uzbekova S.; Perreau C.; Papillier P.; Mermillod P.; Dalbie’s-Tran R. Spatio-temporal expression of the germ cell marker genes MATER, ZAR1, GDF9, BMP15, and VASA in adult bovine tissues, oocytes, and preimplantation embryos. Biol. Reprod. 71: 1359–1366; 2004.PubMedCrossRefGoogle Scholar
  28. Rajhans R.; Saikumar G.; Dubey P. K.; Sharma G. T. Effect of timing of development on total cell number and expression profile of HSP 70.1 and GLUT1 in buffalo (Bubalus bubalis) preimplantation embryo produced in vitro. Cell Biol. Int. 34: 463–468; 2010.PubMedCrossRefGoogle Scholar
  29. Rajkovic A.; Yan M. S. C.; Klysik M.; Matzuk M. Discovery of germ cell-specific transcripts by expressed sequence tag database analysis. Fertil. Steril. 76: 550–554; 2001.PubMedCrossRefGoogle Scholar
  30. Rizos D.; Gutierrez-Adan A.; Perez-Garnalo S.; de la Fuente J.; Boland M. P.; Lonergan P. Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression. Biol. Reprod. 68: 236–243; 2003.PubMedCrossRefGoogle Scholar
  31. Rizos D.; Lonergan P.; Ward F.; Duffy P.; Boland M. P. Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol. Reprod. Dev. 61: 234–248; 2002.PubMedCrossRefGoogle Scholar
  32. Romero-Arredondo A.; Seidel G. E. Effects of follicular fluid during in vitro maturation of bovine oocytes on in vitro fertilization and early embryonic development. Biol. Reprod. 55: 1012–1016; 1996.PubMedCrossRefGoogle Scholar
  33. Rosen M. P.; Zamah A. M.; Shen S.; Dobson A. T.; McCulloch E. C.; Rinaudo F. P.; Lamb D. J.; Cedars I. M. The effect of follicular fluid hormones on oocyte recovery after ovarian stimulation: FSH level predicts oocyte recovery. Reprod. Biol. Endocrinol. 7: 35; 2009.PubMedCrossRefGoogle Scholar
  34. Samartzi F.; Tsakmakidis I.; Theodosiadou E.; Vainas E. Effect of porcine and ovine FSH on nuclear maturation of pig oocytes in vitro. Reprod. Domest. Anim. 43: 153–156; 2008.PubMedCrossRefGoogle Scholar
  35. Sambrook J.; Russell D. W. Molecular cloning, Chapter 1. In: Protocol 1–3, Preparation of plasmid DNA by alkaline lysis with SDS. Cold Spring Harbor Laboratory Press, New York; 2001Google Scholar
  36. Schoevers E. J.; Kidson A.; Verheijden J. H.; Bevers M. M. Effect of follicle-stimulating hormone on nuclear and cytoplasmic maturation of sow oocytes in vitro. Theriogenology 59: 2017–2028; 2003.PubMedCrossRefGoogle Scholar
  37. Sharma G. T.; Prasad S.; Nath A.; Singhal S.; Singh N.; Gade N. E.; Saikumar G. Expression and characterization of constitutive heat shock protein 70.1 (hspa-1a) gene in in-vitro produced and in-vivo derived buffalo (Bubalus bubalis) embryos. Reprod. Domest. Anim.; 2012. doi: 10.1111/j.1439-0531.2012.02002.x.
  38. Sharov A. A.; Piao Y.; Matoba R.; Dudekula D. B.; Qian Y.; VanBuren V.; Falco G.; Martin P. R.; Stagg C. A.; Bassey U. C.; Wang Y.; Carter M. G.; Hamatani T.; Aiba K.; Akutsu H.; Sharova L.; Tanaka T. S.; Kimber W. L.; Yoshikawa T.; Jaradat S. A.; Pantano S.; Nagaraja R.; Boheler K. R.; Taub D.; Hodes R. J.; Longo D. L.; Schlessinger D.; Keller J.; Klotz E.; Kelsoe G.; Umezawa A.; Vescovi A. L.; Rossant J.; Kunath T.; Hogan B. L.; Curci A.; D’Urso M.; Kelso J.; Hide W.; Ko M. S. Transcriptome analysis of mouse stem cells and early embryos. PLoS Biol. 1: E74; 2003.PubMedCrossRefGoogle Scholar
  39. Sirard M. A.; Desrosier S.; Assidi M. In vivo and in vitro effects of FSH on oocyte maturation and developmental competence. Theriogenology 68: S71–S76; 2007.PubMedCrossRefGoogle Scholar
  40. Su Y. Q.; Wu X.; O’Brien M. L.; Pendola F. L.; Denegre J. N.; Matzuk M. M.; Eppig J. J. Synergistic roles of the oocyte-cumulus cell complex in mice: genetic evidence for an oocyte-granulosa cell regulatory loop. Dev. Biol. 276: 64–73; 2004.PubMedCrossRefGoogle Scholar
  41. Sutton M. L.; Gilchrist R. B.; Thompson J. G. Effects of in-vivo and in-vitro environments on the metabolism of the cumulus-oocyte complex and its influence on oocyte developmental capacity. Hum. Reprod. Update 9: 35–48; 2003.PubMedCrossRefGoogle Scholar
  42. Thelie A.; Papillier P.; Pennetier S.; Perreau C.; Traverso J. M.; Uzbekova S.; Mermillod P.; Joly C.; Humblot P.; Dalbies-Tran R. Differential regulation of abundance and deadenylation of maternal transcripts during bovine oocyte maturation in vitro and in vivo. BMC Dev. Biol. 7: 125; 2007.PubMedCrossRefGoogle Scholar
  43. Tong Z. B.; Bondy C. A.; Zhou J.; Nelson L. M. A human homologue of mouse Mater, a maternal effect gene essential for early embryonic development. Hum. Reprod. 17: 903–911; 2002.PubMedCrossRefGoogle Scholar
  44. Tong Z. B.; Gold L.; De Pol A.; Vanevski K.; Dorward H.; Sena P.; Palumbo C.; Bondy C. A.; Nelson L. M. Developmental expression and subcellular localization of mouse MATER, an oocyte-specific protein essential for early development. Endocrinology 145: 1427–1434; 2004.PubMedCrossRefGoogle Scholar
  45. Tong Z. B.; Gold L.; Pfeifer K. E.; Dorward H.; Lee E.; Bondy C. A.; Dean J.; Nelson L. M. Mater, a maternal effect gene required for early embryonic development in mice. Nat. Genet. 26: 267–268; 2000.PubMedCrossRefGoogle Scholar
  46. Tong Z. B.; Nelson L. M. A mouse gene encoding an oocyte antigen associated with autoimmune premature ovarian failure. Endocrinology 140: 3720–3726; 1999.PubMedCrossRefGoogle Scholar
  47. Van Tol H. T.; Van Eijk M. J.; Mummery C. L.; van den Hurk R.; Bevers M. M. Influence of FSH and hCG on the resumption of meiosis of bovine oocytes surrounded by cumulus cells connected to membrana granulosa. Mol. Reprod. Dev. 45: 218–224; 1996.PubMedCrossRefGoogle Scholar
  48. Vitale A. M.; Calvert M. E.; Mallavarapu M.; Yurttas P.; Perlin J.; Herr J.; Coonrod S. Proteomic profiling of murine oocyte maturation. Mol. Reprod. Dev. 74: 608–616; 2007.PubMedCrossRefGoogle Scholar
  49. Wang S.; Kou Z.; Jing Z.; Zhang Y.; Guo X.; Dong M.; Wilmut I.; Gao S. Proteome of mouse oocytes at different developmental stages. Proc. Natl. Acad. Sci. 107: 17639–17644; 2010.PubMedCrossRefGoogle Scholar
  50. Wrenzycki C.; Hermann D.; Carnwath J. W.; Niemann H. Alterations in the relative abundance of gene transcript in preimplantation bovine embryos cultured in medium supplemented with either serum or PVA. Mol. Reprod. Dev. 53: 8–18; 1999.PubMedCrossRefGoogle Scholar
  51. Wrenzycki C.; Herrmann D.; Keskintepe L. A.; Martins Jr. A.; Sirisathien S.; Brackett B. Effects of culture system and protein supplementation on mRNA expression in preimplantation bovine embryos. Hum. Reprod. 16: 893–901; 2001.PubMedCrossRefGoogle Scholar
  52. Wu X.; Viveiros M. M.; Eppig J. J.; Bai Y.; Fitzpatrick S. L.; Matzuk M. M. Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nat. Genet. 33: 187–191; 2003.PubMedCrossRefGoogle Scholar
  53. Xia G.; Byskov A. G.; Andersen C. Y. Cumulus cells secrete a meiosis-inducing substance by stimulation with forskolin and dibutyric cyclic adenosine monophosphate. Mol. Reprod. Dev. 39: 17–24; 1994.PubMedCrossRefGoogle Scholar
  54. Ye J.; Campbell K. H.; Craigon J.; Luck M. R. Dynamic changes in meiotic progression and improvement of developmental competence of pig oocytes in vitro by follicle-stimulating hormone and cycloheximide. Biol. Reprod. 72: 399–406; 2005.PubMedCrossRefGoogle Scholar
  55. Yoshida M.; Ishizaki Y.; Kawagishi H.; Bamba K.; Kojima Y. Effects of pig follicular fluid on maturation of pig oocytes in vitro and on their subsequent fertilizing and developmental capacity in vitro. J. Reprod. Fertil. 95: 481–488; 1992.PubMedCrossRefGoogle Scholar
  56. Zeng F.; Schultz R. M. Gene expression in mouse oocytes and preimplantation embryos: use of suppression subtractive hybridization to identify oocyte- and embryo-specific genes. Biol. Reprod. 68: 31–39; 2003.PubMedCrossRefGoogle Scholar
  57. Zhang P.; Ni X.; Guo Y.; Guo X.; Wang Y.; Zhou Z.; Huo R.; Sha J. Proteomic-based identification of maternal proteins in mature mouse oocytes. BMC Genomics 10: 348; 2009.PubMedCrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2012

Authors and Affiliations

  • Amar Nath
    • 1
  • Veena Sharma
    • 1
  • Pawan K. Dubey
    • 1
  • Pratheesh M. D.
    • 1
  • Nitin E. Gade
    • 1
  • G. Saikumar
    • 1
  • G. Taru Sharma
    • 1
  1. 1.Division of Physiology and ClimatologyIndian Veterinary Research InstituteIzatnagarIndia

Personalised recommendations