Skip to main content

Advertisement

Log in

Exploring the enkephalinergic differentiation potential in adult stem cells for cell therapy and drug screening implications

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Stem cell therapy is one of the most promising treatments in neuroregenerative medicine. Considering the role of the endogenous opioid system in controlling the pathophysiology of neurological disorders and behavioral aberrations, current studies have focused on enkephalins as a part of the opioid system. Due to high capability of unrestricted somatic stem cells (USSCs) and human mesenchymal stem cells (hMSCs) for cell therapy and transplantation; here, we examined their enkephalinergic differentiation potential through Ikaros-related pathways in order to develop in vitro models to help drug screening and stem cell therapy for the opioid-related disorders. The authenticity of the stem cells was verified by differentiation experiments along with flow cytometry for surface markers. Later, we confirmed their neurogenic differentiation with semiquantitative and quantitative transcriptional and translational evaluations of the enkephalinergic-related genes such as proenkephalin, CREBZF, Ikaros, and prodynorphin. Our findings supported the enkephalinergic differentiation of these stem cells. Noteworthy, USSCs showed higher potential for differentiating into enkephalinergic neurons under Ikaros activation than hMSCs, which makes them appropriate for neurological therapeutic applications. In conclusion, this study suggests a powerful in vitro model for neurogenesis that may help clarification of enkephalinergic differentiation and related signaling networks along with neural drug screening. Such investigations may be beneficial to ameliorate the neural-related therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  • A A, V T, T T, D DS, E P, G D, G M. Performance Analysis in Sabre. J Strength Cond Res; 2012.

  • Abdel-Salam O. M. Stem cell therapy for Alzheimer’s disease. CNS Neurol Disord Drug Targets 10: 459–485; 2011.

    PubMed  CAS  Google Scholar 

  • Agoston D. V.; Szemes M.; Dobi A.; Palkovits M.; Georgopoulos K.; Gyorgy A.; Ring M. A. Ikaros is expressed in developing striatal neurons and involved in enkephalinergic differentiation. J Neurochem 102: 1805–1816; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Arora T.; Mehta A. K.; Joshi V.; Mehta K. D.; Rathor N.; Mediratta P. K.; Sharma K. K. Substitute of animals in drug research: an approach towards fulfillment of 4R’s. Indian J Pharm Sci 73: 1–6; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Bakhshandeh B.; Soleimani M.; Hafizi M.; Ghaemi N. A comparative study on nonviral genetic modifications in cord blood and bone marrow mesenchymal stem cells. Cytotechnology 64(5): 523–540; 2012a.

    Article  PubMed  CAS  Google Scholar 

  • Bakhshandeh B.; Soleimani M.; Hafizi M.; Paylakhi S. H.; Ghaemi N. MicroRNA signature associated with osteogenic lineage commitment. Mol Biol Rep 39(7): 7569–7581; 2012b.

    Article  PubMed  CAS  Google Scholar 

  • Bremer S.; Hartung T. The use of embryonic stem cells for regulatory developmental toxicity testing in vitro–the current status of test development. Curr Pharm Des 10: 2733–2747; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Charbord P. Bone marrow mesenchymal stem cells: historical overview and concepts. Hum Gene Ther 21: 1045–1056; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Chavkin C.; Shoemaker W. J.; McGinty J. F.; Bayon A.; Bloom F. E. Characterization of the prodynorphin and proenkephalin neuropeptide systems in rat hippocampus. J Neurosci 5: 808–816; 1985.

    PubMed  CAS  Google Scholar 

  • Dvorakova J.; Hruba A.; Velebny V.; Kubala L. Isolation and characterization of mesenchymal stem cell population entrapped in bone marrow collection sets. Cell Biol Int 32: 1116–1125; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Fallahi-Sichani M.; Soleimani M.; Najafi S. M.; Kiani J.; Arefian E.; Atashi A. In vitro differentiation of cord blood unrestricted somatic stem cells expressing dopamine-associated genes into neuron-like cells. Cell Biol Int 31: 299–303; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Gurling H. Candidate genes and favoured loci: strategies for molecular genetic research into schizophrenia, manic depression, autism, alcoholism and Alzheimer’s disease. Psychiatr Dev 4: 289–309; 1986.

    PubMed  CAS  Google Scholar 

  • Hao L.; Sun H.; Wang J.; Wang T.; Wang M.; Zou Z. Mesenchymal stromal cells for cell therapy: besides supporting hematopoiesis. Int J Hematol 95(1): 34–46; 2011.

    Article  PubMed  Google Scholar 

  • Ichim T. E.; Solano F.; Glenn E.; Morales F.; Smith L.; Zabrecky G.; Riordan N. H. Stem cell therapy for autism. J Transl Med 5: 30; 2007.

    Article  PubMed  Google Scholar 

  • Israngkun P. P.; Newman H. A.; Patel S. T.; Duruibe V. A.; Abou-Issa H. Potential biochemical markers for infantile autism. Neurochem Pathol 5: 51–70; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Kern S.; Eichler H.; Stoeve J.; Kluter H.; Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24: 1294–1301; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Kidd P. M. Autism, an extreme challenge to integrative medicine. Part: 1: the knowledge base. Altern Med Rev 7: 292–316; 2002.

    PubMed  Google Scholar 

  • Kim S. W.; Han H.; Chae G. T.; Lee S. H.; Bo S.; Yoon J. H.; Lee Y. S.; Lee K. S.; Park H. K.; Kang K. S. Successful stem cell therapy using umbilical cord blood-derived multipotent stem cells for Buerger’s disease and ischemic limb disease animal model. Stem Cells 24: 1620–1626; 2006.

    Article  PubMed  Google Scholar 

  • Kogler G.; Sensken S.; Airey J. A.; Trapp T.; Muschen M.; Feldhahn N.; Liedtke S.; Sorg R. V.; Fischer J.; Rosenbaum C.; Greschat S.; Knipper A.; Bender J.; Degistirici O.; Gao J.; Caplan A. I.; Colletti E. J.; Almeida-Porada G.; Muller H. W.; Zanjani E.; Wernet P. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200: 123–135; 2004.

    Article  PubMed  Google Scholar 

  • Le Merrer J.; Becker J. A.; Befort K.; Kieffer B. L. Reward processing by the opioid system in the brain. Physiol Rev 89: 1379–1412; 2009.

    Article  PubMed  Google Scholar 

  • Lunn J. S.; Sakowski S. A.; Hur J.; Feldman E. L. Stem cell technology for neurodegenerative diseases. Ann Neurol 70: 353–361; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Ibanez R.; Crespo E.; Urban N.; Sergent-Tanguy S.; Herranz C.; Jaumot M.; Valiente M.; Long J. E.; Pineda J. R.; Andreu C.; Rubenstein J. L.; Marin O.; Georgopoulos K.; Mengod G.; Farinas I.; Bachs O.; Alberch J.; Canals J. M. Ikaros-1 couples cell cycle arrest of late striatal precursors with neurogenesis of enkephalinergic neurons. J Comp Neurol 518: 329–351; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Nandhu M. S.; Naijil G.; Smijin S.; Jayanarayanan S.; Paulose C. S. Opioid system functional regulation in neurological disease management. J Neurosci Res 88: 3215–3221; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Nichogiannopoulou A.; Trevisan M.; Friedrich C.; Georgopoulos K. Ikaros in hemopoietic lineage determination and homeostasis. Semin Immunol 10: 119–125; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Oltean S.; Tulescu D. T.; Bondor C.; Slavcovici A.; Cismaru C.; Lupse M.; Muntean M.; Jianu C.; Marcu C.; Oltean M. Charlson’s weighted index of comorbidities is useful in assessing the risk of death in septic patients. J Crit Care 27: 370–375; 2012.

    Article  PubMed  Google Scholar 

  • Palmer T. D.; Schwartz P. H.; Taupin P.; Kaspar B.; Stein S. A.; Gage F. H. Cell culture. Progenitor cells from human brain after death. Nature 411: 42–43; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Rosado A.; Gomez M.; Manzanares J.; Ramos J. A.; Fernandez-Ruiz J. Changes in prodynorphin and POMC gene expression in several brain regions of rat fetuses prenatally exposed to Delta(9)-tetrahydrocannabinol. Neurotox Res 4: 211–218; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Previc F. H. Prenatal influences on brain dopamine and their relevance to the rising incidence of autism. Med Hypotheses 68: 46–60; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Sadan O.; Melamed E.; Offen D. Bone-marrow-derived mesenchymal stem cell therapy for neurodegenerative diseases. Expert Opin Biol Ther 9: 1487–1497; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Schneider T.; Ziolkowska B.; Gieryk A.; Tyminska A.; Przewlocki R. Prenatal exposure to valproic acid disturbs the enkephalinergic system functioning, basal hedonic tone, and emotional responses in an animal model of autism. Psychopharmacology (Berl) 193: 547–555; 2007.

    Article  CAS  Google Scholar 

  • Sensken S.; Waclawczyk S.; Knaupp A. S.; Trapp T.; Enczmann J.; Wernet P.; Kogler G. In vitro differentiation of human cord blood-derived unrestricted somatic stem cells towards an endodermal pathway. Cytotherapy 9: 362–378; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Shihabuddin L. S.; Aubert I. Stem cell transplantation for neurometabolic and neurodegenerative diseases. Neuropharmacology 58: 845–854; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Tanimura Y.; Vaziri S.; Lewis M. H. Indirect basal ganglia pathway mediation of repetitive behavior: attenuation by adenosine receptor agonists. Behav Brain Res 210: 116–122; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Tondreau T.; Dejeneffe M.; Meuleman N.; Stamatopoulos B.; Delforge A.; Martiat P.; Bron D.; Lagneaux L. Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells. BMC Genomics 9: 166; 2008.

    Article  PubMed  Google Scholar 

  • Trzaska K. A.; Rameshwar P. Current advances in the treatment of Parkinson’s disease with stem cells. Curr Neurovasc Res 4: 99–109; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Vanegas H.; Tortorici V. Opioidergic effects of nonopioid analgesics on the central nervous system. Cell Mol Neurobiol 22: 655–661; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Yahata N.; Asai M.; Kitaoka S.; Takahashi K.; Asaka I.; Hioki H.; Kaneko T.; Maruyama K.; Saido T. C.; Nakahata T.; Asada T.; Yamanaka S.; Iwata N.; Inoue H. Anti-Abeta drug screening platform using human iPS cell-derived neurons for the treatment of Alzheimer’s disease. PLoS One 6: e25788; 2011.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by Stem Cell Technology Research Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masoud Soleimani or Amir Atashi.

Additional information

Editor: T. Okamoto

Behnaz Bakhshandeh and Maryam Hafizi contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure 1

Osteogenic (Alizarin Red), Adipogenic (Oil Red), and chondrogenic (Alcian Blue) differentiation of stem cells after 21 d of in vitro induction. Bars 100 μm (JPEG 75 kb)

High-resolution image file (TIFF 6,355 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hafizi, M., Bakhshandeh, B., Soleimani, M. et al. Exploring the enkephalinergic differentiation potential in adult stem cells for cell therapy and drug screening implications. In Vitro Cell.Dev.Biol.-Animal 48, 562–569 (2012). https://doi.org/10.1007/s11626-012-9546-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-012-9546-4

Keywords

Navigation