Abstract
Bone marrow mesenchymal stem cells (MSCs) are adult pluripotent cells that are considered to be an attractive cell type for therapy models and for nuclear transfer transgenesis. To date, MSCs from various species have been studied, but only a limited amount of information regarding dairy goat MSCs (gMSCs) is available. The objectives of this study were to isolate, induce the multilineage mesenchymal differentiation, and investigate the gene modification efficiency of gMSCs, thereby initiating further research on these cells. The gMSCs isolated from bone marrow grew, attached to plastic with a typical fibroblast-like morphology, and expressed the mesenchymal surface marker CD44, CD29, CD90, and CD166, but not the hematopoietic marker CD45. Furthermore, the gMSCs expressed the transcription factors Oct-4 and Nanog, which have been shown to be critical for stem cell self-renewal and pluripotency. The multilineage differentiation potential of gMSCs was revealed by their ability to undergo adipogenic and osteogenic differentiation when exposed to specific inducing conditions. Transient transduction of gMSCs with a plasmid containing the GFP gene resulted in higher transfection rate compared with fetal fibroblasts (FFs). Furthermore, cell colonies with stable genetic modifications were obtained when gMSCs were transfected with a mammary-specific expression vector containing human lysosomal acid beta-glucosidase gene (hGCase). In conclusion, these results demonstrated that typical mesenchymal stem cells were isolated from dairy goat bone marrow, possessed the characteristics of pluripotent stem cells, and had the potential of specific genetic modifications for gene therapy and producing transgenic goats.








Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Baksh D.; Davies J. E.; Zandstra P. W. Adult human bone marrow-derived mesenchymal progenitor cells are capable of adhesion-independent survival and expansion. Exp. Hematol. 31: 723–732; 2003.
Baksh D.; Davies J. E.; Zandstra P. W. Soluble factor cross-talk between human bone marrow-derived hematopoietic and mesenchymal cells enhances in vitro CFU-F and CFU-O growth and reveals heterogeneity in the mesenchymal progenitor cell compartment. Blood 106: 3012–3019; 2005.
Barzilay R.; Melamed E.; Offen D. Introducing transcription factors to multipotent mesenchymal stem cells: making transdifferentiation possible. Stem Cells 27: 2509–2515; 2009.
Behboodi E.; Ayres S. L.; Memili E.; O’Coin M.; Chen L. H.; Reggio B. C.; Landry A. M.; Gavin W. G.; Meade H. M.; Godke R. A.; Echelard Y. Health and reproductive profiles of malaria antigen-producing transgenic goats derived by somatic cell nuclear transfer. Cloning Stem Cells 7: 107–118; 2005.
Bosch P.; Pratt S. L.; Stice S. L. Isolation, characterization, gene modification, and nuclear reprogramming of porcine mesenchymal stem cells. Biol. Reprod. 74: 46–57; 2006.
Bosnakovski D.; Mizuno M.; Kim G.; Takagi S.; Okumura M.; Fujinaga T. Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res. 319: 243–253; 2005.
Faast R.; Harrison S. J.; Beebe L. F.; McIlfatrick S. M.; Ashman R. J.; Nottle M. B. Use of adult mesenchymal stem cells isolated from bone marrow and blood for somatic cell nuclear transfer in pigs. Cloning Stem Cells 8: 166–173; 2006.
Fortier L. A.; Nixon A. J.; Williams J.; Cable C. S. Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells. Am. J. Vet. Res. 59: 1182–1187; 1998.
Friedenstein A. J.; Gorskaja J. F.; Kulagina N. N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol. 4: 267–274; 1976.
Guggenbuhl P.; Grosbois B.; Chalès G. Gaucher disease. Joint Bone Spine 75: 116–124; 2008.
He S.; Pant D.; Schiffmacher A.; Bischoff S.; Melican D.; Gavin W.; Keefer C. Developmental expression of pluripotency determining factors in dairy goat embryos: novel pattern of NANOG protein localization in the nucleolus. Mol. Reprod. Dev. 73: 1512–1522; 2006.
He X.; Li Y. L.; Wang X. R.; Guo X.; Niu Y. Mesenchymal stem cells transduced by pLEGFP-N1 retroviral vector maintain their biological features and differentiation. Chin. Med. J. (Engl) 118: 1728–1734; 2005.
Jiang Y.; Jahagirdar B. N.; Reinhardt R. L.; Schwartz R. E.; Keene C. D.; Ortiz-Gonzalez X. R.; Reyes M.; Lenvik T.; Lund T.; Blackstad M.; Du J.; Aldrich S.; Lisberg A.; Low W. C.; Largaespada D. A.; Verfaillie C. M. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418: 41–49; 2002.
Kassem M. Mesenchymal stem cells: biological characteristics and potential clinical applications. Cloning Stem Cells 6: 369–374; 2004.
Ke H.; Wang P.; Yu W.; Liu X.; Liu C.; Yang F.; Mao F. F.; Zhang L.; Zhang X.; Lahn B. T.; Xiang A. P. Derivation, characterization and gene modification of cynomolgus monkey mesenchymal stem cells. Differentiation 77: 256–262; 2009.
Keefer C. L. Production of bioproducts through the use of transgenic animal models. Anim. Reprod. Sci. 82–83: 5–12; 2004.
Khatri M.; O’Brien T. D.; Sharma J. M. Isolation and differentiation of chicken mesenchymal stem cells from bone marrow. Stem Cells Dev. 18: 1485–1492; 2009.
Kohyama J.; Abe H.; Shimazaki T.; Koizumi A.; Nakashima K.; Gojo S.; Taga T.; Okano H.; Hata J.; Umezawa A. Brain from bone: efficient “meta-differentiation” of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation 68: 235–244; 2001.
Lazaris A.; Rebecca K.; Karatzas C. N.; Keefer C. L. Transgensis using nuclear transfer in goats. Methods Mol. Biol. 348: 213–225; 2006.
Lee S. L.; Kang E. J.; Maeng G. H.; Kim M. J.; Park J. K.; Kim T. S.; Hyun S. H.; Lee E. S.; Rho G. J. Developmental ability of miniature pig embryos cloned with mesenchymal stem cells. J. Reprod. Dev. 56: 256–262; 2010.
Li L.; Bai X.; Gong X.; Liu H.; Chen L.; Guan W.; Ma Y. Differentiation potential of bone marrow mesenchymal stem cells in duck. J. Genet. Genomics 36: 133–140; 2009.
Majumdar M. K.; Banks V.; Peluso D. P.; Morris E. A. Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J. Cell. Physiol. 185: 98–106; 2000.
Martin D. R.; Cox N. R.; Hathcock T. L.; Niemeyer G. P.; Baker H. J. Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Exp. Hematol. 30: 879–886; 2002.
Nayernia K.; Lee J. H.; Drusenheimer N.; Nolte J.; Wulf G.; Dressel R.; Gromoll J.; Engel W. Derivation of male germ cells from bone marrow stem cells. Lab. Invest. 86: 654–663; 2006.
Phinney D. G.; Kopen G.; Isaacson R. L.; Prockop D. J. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice:variations in yield, growth, and differentiation. J. Cell. Biochem. 72: 570–585; 1999.
Pittenger M. F.; Mackay A. M.; Beck S. C.; Jaiswal R. K.; Douglas R.; Mosca J. D.; Moorman M. A.; Simonetti D. W.; Craig S.; Marshak D. R. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147; 1999.
Rho G. J.; Kumar B. M.; Balasubramanian S. S. Porcine mesenchymal stem cells—current technological status and future perspective. Front. Biosci. 1: 3942–3961; 2009.
Sawkar A. R.; D’Haeze W.; Kelly J. W. Therapeutic strategies to ameliorate lysosomal storage disorders-a focus on Gaucher disease. Cell. Mol. Life Sci. 63: 1179–1192; 2006.
Tang D. Q.; Cao L. Z.; Burkhardt B. R.; Xia C. Q.; Litherland S. A.; Atkinson M. A.; Yang L. J. In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes 53: 1721–1732; 2004.
Toma C.; Pittenger M. F.; Cahill K. S.; Byrne B. J.; Kessler P. D. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105: 93–98; 2002.
Tropel P.; Noël D.; Platet N.; Legrand P.; Benabid A. L.; Berger F. Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Exp. Cell Res. 295: 395–406; 2004.
Yang X. F.; He X.; He J.; Zhang L. H.; Su X. J.; Dong Z. Y.; Xu Y. J.; Li Y.; Li Y. L. High efficient isolation and systematic identification of human adipose-derived mesenchymal stem cells. J. Biomed. Sci. 19: 59; 2011.
Zhang Y. L.; Wan Y. J.; Wang Z. Y.; Xu D.; Pang X. S.; Meng L.; Wang L. H.; Zhong B. S.; Wang F. Production of dairy goat embryos, by nuclear transfer, transgenic for human acid beta-glucosidase. Theriogenology 73: 681–690; 2010.
Acknowledgments
This study was financially supported by the National Major Special Projects on New Cultivation for Transgenic Organisms (no. 2011ZX08008-004 and 2011ZX08008-003) and the Science-Technology Foundation for Young Scientist of Nanjing Agricultural University (no. KJ2010012).
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor: T. Okamoto
Rights and permissions
About this article
Cite this article
Zhang, Y., Fan, Y., Wang, Z. et al. Isolation, characterization, and gene modification of dairy goat mesenchymal stem cells from bone marrow. In Vitro Cell.Dev.Biol.-Animal 48, 418–425 (2012). https://doi.org/10.1007/s11626-012-9530-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11626-012-9530-z


