Skip to main content

Advertisement

Log in

Isolation, characterization, and gene modification of dairy goat mesenchymal stem cells from bone marrow

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Bone marrow mesenchymal stem cells (MSCs) are adult pluripotent cells that are considered to be an attractive cell type for therapy models and for nuclear transfer transgenesis. To date, MSCs from various species have been studied, but only a limited amount of information regarding dairy goat MSCs (gMSCs) is available. The objectives of this study were to isolate, induce the multilineage mesenchymal differentiation, and investigate the gene modification efficiency of gMSCs, thereby initiating further research on these cells. The gMSCs isolated from bone marrow grew, attached to plastic with a typical fibroblast-like morphology, and expressed the mesenchymal surface marker CD44, CD29, CD90, and CD166, but not the hematopoietic marker CD45. Furthermore, the gMSCs expressed the transcription factors Oct-4 and Nanog, which have been shown to be critical for stem cell self-renewal and pluripotency. The multilineage differentiation potential of gMSCs was revealed by their ability to undergo adipogenic and osteogenic differentiation when exposed to specific inducing conditions. Transient transduction of gMSCs with a plasmid containing the GFP gene resulted in higher transfection rate compared with fetal fibroblasts (FFs). Furthermore, cell colonies with stable genetic modifications were obtained when gMSCs were transfected with a mammary-specific expression vector containing human lysosomal acid beta-glucosidase gene (hGCase). In conclusion, these results demonstrated that typical mesenchymal stem cells were isolated from dairy goat bone marrow, possessed the characteristics of pluripotent stem cells, and had the potential of specific genetic modifications for gene therapy and producing transgenic goats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Baksh D.; Davies J. E.; Zandstra P. W. Adult human bone marrow-derived mesenchymal progenitor cells are capable of adhesion-independent survival and expansion. Exp. Hematol. 31: 723–732; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Baksh D.; Davies J. E.; Zandstra P. W. Soluble factor cross-talk between human bone marrow-derived hematopoietic and mesenchymal cells enhances in vitro CFU-F and CFU-O growth and reveals heterogeneity in the mesenchymal progenitor cell compartment. Blood 106: 3012–3019; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Barzilay R.; Melamed E.; Offen D. Introducing transcription factors to multipotent mesenchymal stem cells: making transdifferentiation possible. Stem Cells 27: 2509–2515; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Behboodi E.; Ayres S. L.; Memili E.; O’Coin M.; Chen L. H.; Reggio B. C.; Landry A. M.; Gavin W. G.; Meade H. M.; Godke R. A.; Echelard Y. Health and reproductive profiles of malaria antigen-producing transgenic goats derived by somatic cell nuclear transfer. Cloning Stem Cells 7: 107–118; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Bosch P.; Pratt S. L.; Stice S. L. Isolation, characterization, gene modification, and nuclear reprogramming of porcine mesenchymal stem cells. Biol. Reprod. 74: 46–57; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Bosnakovski D.; Mizuno M.; Kim G.; Takagi S.; Okumura M.; Fujinaga T. Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res. 319: 243–253; 2005.

    Article  PubMed  Google Scholar 

  • Faast R.; Harrison S. J.; Beebe L. F.; McIlfatrick S. M.; Ashman R. J.; Nottle M. B. Use of adult mesenchymal stem cells isolated from bone marrow and blood for somatic cell nuclear transfer in pigs. Cloning Stem Cells 8: 166–173; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Fortier L. A.; Nixon A. J.; Williams J.; Cable C. S. Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells. Am. J. Vet. Res. 59: 1182–1187; 1998.

    PubMed  CAS  Google Scholar 

  • Friedenstein A. J.; Gorskaja J. F.; Kulagina N. N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol. 4: 267–274; 1976.

    PubMed  CAS  Google Scholar 

  • Guggenbuhl P.; Grosbois B.; Chalès G. Gaucher disease. Joint Bone Spine 75: 116–124; 2008.

    Article  PubMed  CAS  Google Scholar 

  • He S.; Pant D.; Schiffmacher A.; Bischoff S.; Melican D.; Gavin W.; Keefer C. Developmental expression of pluripotency determining factors in dairy goat embryos: novel pattern of NANOG protein localization in the nucleolus. Mol. Reprod. Dev. 73: 1512–1522; 2006.

    Article  PubMed  CAS  Google Scholar 

  • He X.; Li Y. L.; Wang X. R.; Guo X.; Niu Y. Mesenchymal stem cells transduced by pLEGFP-N1 retroviral vector maintain their biological features and differentiation. Chin. Med. J. (Engl) 118: 1728–1734; 2005.

    CAS  Google Scholar 

  • Jiang Y.; Jahagirdar B. N.; Reinhardt R. L.; Schwartz R. E.; Keene C. D.; Ortiz-Gonzalez X. R.; Reyes M.; Lenvik T.; Lund T.; Blackstad M.; Du J.; Aldrich S.; Lisberg A.; Low W. C.; Largaespada D. A.; Verfaillie C. M. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418: 41–49; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Kassem M. Mesenchymal stem cells: biological characteristics and potential clinical applications. Cloning Stem Cells 6: 369–374; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Ke H.; Wang P.; Yu W.; Liu X.; Liu C.; Yang F.; Mao F. F.; Zhang L.; Zhang X.; Lahn B. T.; Xiang A. P. Derivation, characterization and gene modification of cynomolgus monkey mesenchymal stem cells. Differentiation 77: 256–262; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Keefer C. L. Production of bioproducts through the use of transgenic animal models. Anim. Reprod. Sci. 82–83: 5–12; 2004.

    Article  PubMed  Google Scholar 

  • Khatri M.; O’Brien T. D.; Sharma J. M. Isolation and differentiation of chicken mesenchymal stem cells from bone marrow. Stem Cells Dev. 18: 1485–1492; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Kohyama J.; Abe H.; Shimazaki T.; Koizumi A.; Nakashima K.; Gojo S.; Taga T.; Okano H.; Hata J.; Umezawa A. Brain from bone: efficient “meta-differentiation” of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation 68: 235–244; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Lazaris A.; Rebecca K.; Karatzas C. N.; Keefer C. L. Transgensis using nuclear transfer in goats. Methods Mol. Biol. 348: 213–225; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Lee S. L.; Kang E. J.; Maeng G. H.; Kim M. J.; Park J. K.; Kim T. S.; Hyun S. H.; Lee E. S.; Rho G. J. Developmental ability of miniature pig embryos cloned with mesenchymal stem cells. J. Reprod. Dev. 56: 256–262; 2010.

    Article  PubMed  Google Scholar 

  • Li L.; Bai X.; Gong X.; Liu H.; Chen L.; Guan W.; Ma Y. Differentiation potential of bone marrow mesenchymal stem cells in duck. J. Genet. Genomics 36: 133–140; 2009.

    Article  PubMed  Google Scholar 

  • Majumdar M. K.; Banks V.; Peluso D. P.; Morris E. A. Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J. Cell. Physiol. 185: 98–106; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Martin D. R.; Cox N. R.; Hathcock T. L.; Niemeyer G. P.; Baker H. J. Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Exp. Hematol. 30: 879–886; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Nayernia K.; Lee J. H.; Drusenheimer N.; Nolte J.; Wulf G.; Dressel R.; Gromoll J.; Engel W. Derivation of male germ cells from bone marrow stem cells. Lab. Invest. 86: 654–663; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Phinney D. G.; Kopen G.; Isaacson R. L.; Prockop D. J. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice:variations in yield, growth, and differentiation. J. Cell. Biochem. 72: 570–585; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Pittenger M. F.; Mackay A. M.; Beck S. C.; Jaiswal R. K.; Douglas R.; Mosca J. D.; Moorman M. A.; Simonetti D. W.; Craig S.; Marshak D. R. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Rho G. J.; Kumar B. M.; Balasubramanian S. S. Porcine mesenchymal stem cells—current technological status and future perspective. Front. Biosci. 1: 3942–3961; 2009.

    Article  Google Scholar 

  • Sawkar A. R.; D’Haeze W.; Kelly J. W. Therapeutic strategies to ameliorate lysosomal storage disorders-a focus on Gaucher disease. Cell. Mol. Life Sci. 63: 1179–1192; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Tang D. Q.; Cao L. Z.; Burkhardt B. R.; Xia C. Q.; Litherland S. A.; Atkinson M. A.; Yang L. J. In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes 53: 1721–1732; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Toma C.; Pittenger M. F.; Cahill K. S.; Byrne B. J.; Kessler P. D. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105: 93–98; 2002.

    Article  PubMed  Google Scholar 

  • Tropel P.; Noël D.; Platet N.; Legrand P.; Benabid A. L.; Berger F. Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Exp. Cell Res. 295: 395–406; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Yang X. F.; He X.; He J.; Zhang L. H.; Su X. J.; Dong Z. Y.; Xu Y. J.; Li Y.; Li Y. L. High efficient isolation and systematic identification of human adipose-derived mesenchymal stem cells. J. Biomed. Sci. 19: 59; 2011.

    Article  Google Scholar 

  • Zhang Y. L.; Wan Y. J.; Wang Z. Y.; Xu D.; Pang X. S.; Meng L.; Wang L. H.; Zhong B. S.; Wang F. Production of dairy goat embryos, by nuclear transfer, transgenic for human acid beta-glucosidase. Theriogenology 73: 681–690; 2010.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Major Special Projects on New Cultivation for Transgenic Organisms (no. 2011ZX08008-004 and 2011ZX08008-003) and the Science-Technology Foundation for Young Scientist of Nanjing Agricultural University (no. KJ2010012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wang.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Fan, Y., Wang, Z. et al. Isolation, characterization, and gene modification of dairy goat mesenchymal stem cells from bone marrow. In Vitro Cell.Dev.Biol.-Animal 48, 418–425 (2012). https://doi.org/10.1007/s11626-012-9530-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-012-9530-z

Keywords