Skip to main content
Log in

Ischemia hypothermia improved contractility under normothermia reperfusion in the model of cultured cardiomyocyte

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Though mild hypothermia displays an optimistic alleviation of contractive failure in the ischemia/reperfusion myocardium, we still lacked answers to many questions about its potential mechanisms. Our hypothesis is that hypothermia (32°C) induced in ischemia can ease mitochondrial injury resulting in improvement of myocardial contractility even under the condition of a normothermic reperfusion. Fifty newly born 1–2 d Sprague–Dawley rats were executed and the primary cardiomyocytes were obtained and cultivated in vitro. Myocytes were randomized into three groups and then subjected to ischemia either at 32°C or 37°C, both prior to undergoing reperfusion at 37°C. Contractility was presented as frequency and velocity. Ultrastructural alterations of cardiomyocytes and mitochondrion underwent semi-quantitative analysis with transmission electron microscopy and respiratory function of mitochondria was further assessed simultaneously. During cooling ischemia and following reperfusion, cardiomyocytes acquired a more immediate restoration to baseline level and had a significant difference as compared with those in normothermia (P < 0.05). Furthermore, hypothermia preserved the ultrastructure of myocytes and mitochondrion after ischemia. However, measurement on Heart Injury Score and form factor revealed no differences after 2-h reperfusion either in hypothermia or normothermia. On the contrary, the surface area and respiratory function of mitochondrion in reperfusion differed significantly in both groups (P < 0.05) which had an accordance with the variation on contractile performance. Hypothermia only induced in ischemia can bring contractility benefit even under a normothermia reperfusion in cultured cardiomyocytes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Bernard S. A.; Gray T. W.; Buist M. D.; Jones B. M.; Silvester W.; Gutteridge G.; Smith K. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N. Engl. J. Med. 346: 557–563; 2002.

    Article  PubMed  Google Scholar 

  • Fang X.; Huang Z.; Zhu J. et al. Ultrastructural evidence of mitochondrial abnormalities in postresuscitation myocardial dysfunction. Resuscitation 83(3): 386–394; 2012.

    Article  PubMed  CAS  Google Scholar 

  • Fu J.; Gao J.; Pi R.; Liu P. An optimized protocol for culture of cardiomyocyte from neonatal rat. Cytotechnology 49: 109–116; 2005.

    Article  CAS  Google Scholar 

  • Gao W.-X.; Liu J.-Z. et al. Characteristics of energy metabolism in brain mitochondria of rats exposed to hypoxia. Chin. J. Pathophysiol. 16(10): 879–882; 2000.

    CAS  Google Scholar 

  • Gazmuri R. J.; Weil M. H.; Bisera J.; Tang W.; Fukui M.; McKee D. Myocardial dysfunction after successful resuscitation from cardiac arrest. Critical Care Med. 24(6): 992–1000; 1996.

    Article  CAS  Google Scholar 

  • Gilbert N. F.; Meyer P. E.; Tauriainen M. P. et al. Effects of hypothermia on myocardial substrate selection. Ann. Thorac. Surg. 74: 1208–12; 2002.

    Article  PubMed  Google Scholar 

  • Hale S. L.; Kolner R. A. Myocardial temperature reduction attenuates instituted after prolonged ischemia in rabbits. Cardiovasc. Res. 40: 502–507; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Heyndrickx G. R.; Millard R. W. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J. Clin. Invest. 56: 978–85; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N. Engl. J. Med. 346: 549–556; 2002.

    Article  Google Scholar 

  • Kern K. B.; Hilwig R. W.; Rhee K. H.; Berg R. A. Myocardial dysfunction after resuscitation from cardiac arrest: an example of global myocardial stunning. J. Am. Coll. Cardiol. 28(1): 232–40; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Kuniyoshi Y.; Koja K. et al. Myocardial protective effect of hypothermia during extracorporeal circulation—by quantitative measurement of myocardial oxygen consumption. Ann. Thorac. Cardiovasc. Surg. 9: 155–62; 2003.

    PubMed  Google Scholar 

  • Laurent I.; Monchi M. et al. Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J. Am. Coll. Cardiol. 40(12): 2110–6; 2002.

    Article  PubMed  Google Scholar 

  • Miki T.; Liu G. S.; Cohen M. V. et al. Mild hypothermia reduces infarct size in the beating rabbit heart: a practical intervention for acute myocardial infarction. Basic Res. Cardiol. 93: 372–383; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Negovsky V. A. Postresuscitation disease. Crit. Care Med. 16: 942–6; 2009.

    Article  Google Scholar 

  • Neumar R. W.; Nolan J. P. Post-cardiac arrest syndrome. Circulation 118: 2452–83; 2008.

    Article  PubMed  Google Scholar 

  • Ning X.; Chengsu Xu; Song Y. et al. Hypothermia preserves function and signaling for mitochondrial biogenesis during subsequent ischemia. Am. J. Physiol. Heart Circ. Physiol. 274: 786–793; 1998.

    Google Scholar 

  • Ozisik K.; Yildirim E. et al. Ultrastructural changes of rat cardiac myocytes in a time-dependent manner after traumatic brain injury. Am. J. Transplant. 4: 900–904; 2004.

    Article  PubMed  Google Scholar 

  • Petrosillo G.; Ruggiero F. et al. Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria. FASEB J. 17(15): 2202–2208; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Ristagno G.; Tantillo S.; Sun S.; HarryWeil M.; Tang W. Hypothermia improves ventricular myocyte contractility under conditions of normal perfusion and after an interval of ischemia. Resuscitation 81: 898–903; 2010.

    Article  PubMed  Google Scholar 

  • Shao Z.-H.; Chang W.-T.; Chan K. C. et al. Hypothermia-induced cardioprotection using extended ischemia and early reperfusion cooling. Am. J. Physiol. Heart Circ. Physiol. 292: H1995–2003; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Sims N. R. Rapid isolation of metabolically active mitochondria from rat brain and subregions using Percoll density gradient centrifugation. J. Neurochem. 55(2): 698–707; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Song F.; Shan Y.; Cappello F. et al. Apoptosis is not involved in the mechanism of myocardial dysfunction after resuscitation in a rat model of cardiac arrest and cardiopulmonary resuscitation. Critical Care Med. 38: 1329–1334; 2010.

    Google Scholar 

  • Tissier R.; Couvreu N.; Ghaleh B. et al. Rapid cooling preserves the ischaemic myocardium against mitochondrial damage and left ventricular dysfunction. Cardiovasc. Res. 83: 345–353; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Tsai M.-S.; Barbut D.; Wang H. et al. Intra-arrest rapid head cooling improves postresuscitation myocardial function in comparison with delayed postresuscitation surface cooling. Critical Care Med. 36: S434–439; 2008.

    Article  Google Scholar 

  • Webster C. M.; Kelly S.; Koike M. A. et al. Inflammation and NFκB activation is decreased by hypothermia following global cerebral ischemia. Neurobiol. Dis. 33(2): 301–312; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Xu T.; Tang W. et al. Postresuscitation myocardial diastolic dysfunction following prolonged ventricular fibrillation and cardiopulmonary resuscitation. Critical Care Med. 36: 188–192; 2008.

    Article  Google Scholar 

  • Zhu C.; Wang X.; Cheng X. et al. Post-ischemic hypothermia-induced tissue protection and diminished apoptosis after neonatal cerebral hypoxia–ischemia. Brain Res. 996: 67–75; 2004.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Our best appreciations should be sincerely sent to Haibo Chen (Analysis and Testing Center, Dalian Medical College) for his technical assistance on Image Pro Plus software and constructive advice of morphometric measurement on mitochondrion.

Funding sources

This study was supported by a research grant from National Natural Science Foundation of China (30700303), the Fundamental Research Funds for the Central Universities and Yat-Sen Scholarship for Young Scientists.

Conflict of interest

The authors have no conflict of financial interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zitong Huang.

Additional information

Editor: T. Okamoto

H. Li and X. Fang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Fang, X., Yang, Z. et al. Ischemia hypothermia improved contractility under normothermia reperfusion in the model of cultured cardiomyocyte. In Vitro Cell.Dev.Biol.-Animal 48, 284–292 (2012). https://doi.org/10.1007/s11626-012-9497-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-012-9497-9

Keywords

Navigation