Skip to main content
Log in

Effect of neuronal induction on NSE, Tau, and Oct4 promoter methylation in bone marrow mesenchymal stem cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Cell differentiation involves widespread epigenetic reprogramming, including modulation of DNA methylation patterns. The differentiation potential differences in DNA methylation patterns might function in pluripotency restriction, while tissue-specific differences might work in lineage restriction. To investigate the effects of neuronal induction on promoter methylation pattern in rat bone marrow mesenchymal stem cells (MSCs), we used bisulfite sequencing to analyze the methylation status of the promoter regions in neuron-specific enolase (NSE), microtubule-associated protein Tau, and Oct4 genes in MSCs pre- and post-chemical induction. Neurocytes from the newborn rat brains were used as control. Data showed that NSE and Tau were abundantly expressed in the brain cells and MSC-derived neurocyte-like cells as well but not in the MSCs. However, both NSE promoter (−214 ∼ +57 bp) and Tau promoter (−239 ∼ +131 bp) were hypomethylated (<4 % CpG methylation). Oct4 was expressed in MSCs, and the Oct4 promoter (−293 ∼ −85 bp) was hypermethylated (>79 % CpG methylation). Interestingly, it was found that the methylation of the locus −113 bp upstream of Oct4 transcription start site was specifically enhanced in the process of MSCs' neuronal differentiation. Further experiments in hepatocytes derived from MSCs and hepar tissue proved that the −113 bp locus methylation increased also in non-neurogenic lineages. Tfsitescan prediction showed that AP-2-alpha/gamma and Sp1 might regulate Oct4 transcription upon MSC differentiation by binding the −113 bp locus. So, we conclude that promoter methylation modifies pluripotency-specific gene, rather than regulates the expression of neural-specific genes when MSCs differentiate into neurocyte-like cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Ballestar E. An introduction to epigenetics. Cell Biology of Stem Cells 711: 1–11; 2011.

    Google Scholar 

  • Billon N.; Carlisi D.; Datto M. B.; Van Grunsven L.; Watt A.; Wang X. F.; Rudkin B. B. Cooperation of Sp1 and p300 in the induction of the CDK inhibitor p21WAF1/CIP1 during NGF-mediated neuronal differentiation. Oncogene 18: 2872; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Bird A. P.; Wolffe A. P. Methylation-induced repression--belts, braces, and chromatin. Cell 99: 451; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Eden S.; Hashimshony T.; Keshet I.; Cedar H.; Thorne A. DNA methylation models histone acetylation. Nature 394: 842–842; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Fan Z.; Yamaza T.; Lee J. S.; Yu J.; Wang S.; Fan G.; Shi S.; Wang C. Y. BCOR regulates mesenchymal stem cell function by epigenetic mechanisms. Nature Cell Biology 11: 1002–1009; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Farthing C. R.; Ficz G.; Ng R. K.; Chan C. F.; Andrews S.; Dean W.; Hemberger M.; Reik W. Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet 4: e1000116; 2008.

    Article  PubMed  Google Scholar 

  • Gardiner-Garden M.; Frommer M. CpG islands in vertebrate genomes. J. Mol. Biol. 196: 261–282; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Greco S. J.; Liu K.; Rameshwar P. Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells 25: 3143–3154; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Gruenbaum Y.; Stein R.; Cedar H.; Razin A. Methylation of CpG sequences in eukaryotic DNA. Febs Letters 124: 67; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Hilger-Eversheim K.; Moser M.; Schorle H.; Buettner R. Regulatory roles of AP-2 transcription factors in vertebrate development, apoptosis and cell-cycle control. Gene 260: 1–12; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Imamura T.; Ohgane J.; Ito S.; Ogawa T.; Hattori N.; Tanaka S.; Shiota K. CpG island of rat sphingosine kinase-1 gene: tissue-dependent DNA methylation status and multiple alternative first exons. Genomics 76: 117–125; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Irizarry R. A; Ladd-Acosta C.; Wen B.; Wu Z.; Montano C.; Onyango P.; Cui H.; Gabo K.; Rongione M.; Webster M. The human colon cancer methylome shows similar hypo-and hypermethylation at conserved tissue-specific CpG island shores. Nature genetics 41: 178–186; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Jones P. A.; Takai D. The role of DNA methylation in mammalian epigenetics. Science 293: 1068; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Kadonaga J. T.; Carner K. R.; Masiarz F. R.; Tjian R. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell 51: 1079–1090; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Li P.; Tong C.; Mehrian-Shai R.; Jia L.; Wu N.; Yan Y.; Maxson R.; Schulze E.; Song H.; Hsieh C. Germline competent embryonic stem cells derived from rat blastocysts. Cell 135: 1299–1310; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Li Z.; Liu C.; Xie Z.; Song P.; Zhao R. C.; Guo L.; Liu Z.; Wu Y. Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation. PLoS One 6: e20526; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Meissner A.; Mikkelsen T. S.; Gu H.; Wernig M.; Hanna J.; Sivachenko A.; Zhang X.; Bernstein B. E.; Nusbaum C.; Jaffe D. B.; Gnirke A.; Jaenisch R.; Lander E. S. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454: 766–770; 2008.

    PubMed  CAS  Google Scholar 

  • Mohibullah N.; Donner A.; Ippolito J. A.; Williams T. SELEX and missing phosphate contact analyses reveal flexibility within the AP-2[alpha] protein: DNA binding complex. Nucleic Acids Research 27: 2760–2769; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Mohn F.; Weber M.; Rebhan M.; Roloff T. C.; Richter J.; Stadler M. B.; Bibel M.; Schubeler D. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell 30: 755–766; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Pittenger M. F.; Mackay A. M.; Beck S. C.; Jaiswal R. K.; Douglas R.; Mosca J. D.; Moorman M. A.; Simonetti D. W.; Craig S.; Marshak D. R. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Reik W.; Dean W.; Walter J. Epigenetic reprogramming in mammalian development. Science 293: 1089; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Reyes M.; Lund T.; Lenvik T.; Aguiar D.; Koodie L.; Verfaillie C. M. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98: 2615–2625; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Sensebe L.; Krampera M.; Schrezenmeier H.; Bourin P.; Giordano R. Mesenchymal stem cells for clinical application. Vox Sanguinis 98: 93–107; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Song F.; Mahmood S.; Ghosh S.; Liang P.; Smiraglia D. J.; Nagase H.; Held W. A. Tissue specific differentially methylated regions (TDMR): Changes in DNA methylation during development. Genomics 93: 130–139; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Weber M.; Hellmann I.; Stadler M. B.; Ramos L.; Paabo S.; Rebhan M.; Schubeler D. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39: 457–466; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Wen-Hai Y.; Xuan-Hui X.; Xue-Fei H.; Lan M.; Yan X.; Jian-Zhi W.; Ying X. Expression of Tau protein and neuron-specific enolase after differentiation of mesenchymal stem cells into neural cells induced by EGF and bFGF. Chinese Journal of Anatomy 6: 615–617; 2005.

    Google Scholar 

  • Wenke A. K.; Grassel S.; Moser M.; Bosserhoff A. K. The cartilage-specific transcription factor Sox9 regulates AP-2epsilon expression in chondrocytes. Febs Journal 276: 2494–2504; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Yagi S.; Hirabayashi K.; Sato S.; Li W.; Takahashi Y.; Hirakawa T.; Wu G.; Hattori N.; Ohgane J.; Tanaka S.; Liu X. S.; Shiota K. DNA methylation profile of tissue-dependent and differentially methylated regions (T-DMRs) in mouse promoter regions demonstrating tissue-specific gene expression. Genome Res 18: 1969–1978; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Yan W.; Cao M.; Liu J.; Xu Y.; Han X.; Xing Y.; Wang J. Effects of EGF and bFGF on expression of microtubule-associated protein tau and MAP-2 mRNA in human umbilical cord mononuclear cells. Cell biology international 29: 153–157; 2005.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported partly by the National Natural Science Foundation of China (no. 30940025) and Science Foundation of Henan Province (no. 0611043000). We thank our colleague Liu Yongmin for the care of the rats.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhai Yan.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, P., Zhang, Y., Han, X. et al. Effect of neuronal induction on NSE, Tau, and Oct4 promoter methylation in bone marrow mesenchymal stem cells. In Vitro Cell.Dev.Biol.-Animal 48, 251–258 (2012). https://doi.org/10.1007/s11626-012-9494-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-012-9494-z

Keywords

Navigation