Skip to main content

Advertisement

Log in

Comparing the reprogramming efficiency of mouse embryonic fibroblasts, mouse bone marrow mesenchymal stem cells and bone marrow mononuclear cells to iPSCs

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Induced pluripotent stem cells have been derived from various cell types via the ectopic expression of a cocktail of transcription factors. Previous studies have reported that induced pluripotent stem cells can be differentiated into multiple somatic cells, providing an invaluable resource in regenerative medicine. In this study, we compared the reprogramming efficiency of mouse embryonic fibroblasts, mouse bone marrow mesenchymal stem cells, and mouse bone marrow mononuclear cells by counting the number of alkaline phosphatase staining positive clones on day 15 after induced pluripotent stem cells induction. We found that a very low number of alkaline phosphatase-staining positive clones were derived from mouse bone marrow mesenchymal stem cells. We then evaluated the pluripotency of the clones by detecting the expression of embryonic stem cells markers and assessing their ability to form embryoid bodies and teratomas. Mouse bone marrow mesenchymal stem cells population is more homogeneous than mouse bone marrow mononuclear cells, which includes a variety of cell types. Our study indicated that the extremely low efficiency of mouse bone marrow mesenchymal stem cells induction implies that mouse bone marrow mesenchymal stem cells may not be a suitable cell type for the induction of induced pluripotent stem cells unless the efficiency of induction can be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Anokye-Danso F.; Trivedi C. M.; Juhr D. et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8: 376–388; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Aoi T.; Yae K.; Nakagawa M. et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321: 699–702; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Baddoo M.; Hill K.; Wilkinson R. et al. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem 89: 1235–1249; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Chen J.; Liu J.; Chen Y. Rational optimization of reprogramming culture conditions for the generation of induced pluripotent stem cells with ultra-high efficiency and fast kinetics. Cell Res 21: 884–894; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Eminli S.; Utikal J.; Arnold K. et al. Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells 26: 2467–2474; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Esteban M. A.; Wang T.; Qin B. et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6: 71–79; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Hanna J.; Markoulaki S.; Schorderet P. et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133: 250–264; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Hong H.; Takahashi K.; Ichisaka T. et al. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460: 1132–1135; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Kawamura T.; Suzuki J.; Wang Y. V. et al. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460: 1140–1144; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Kim J. B.; Sebastiano V.; Wu G. et al. Oct4-induced pluripotency in adult neural stem cells. Cell 136: 411–419; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Kunisato A.; Wakatsuki M.; Kodama Y. et al. Generation of induced pluripotent stem cells by efficient reprogramming of adult bone marrow cells. Stem Cells Dev 19: 229–238; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Kunisato A.; Wakatsuki M.; Shinba H. et al. Direct generation of induced pluripotent stem cells from human nonmobilized blood. Stem Cells Dev 20: 159–168; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Loh Y. H.; Agarwal S.; Park I. H. et al. Generation of induced pluripotent stem cells from human blood. Blood 113: 5476–5479; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Mali P.; Ye Z.; Hommond H. H. et al. Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells 26: 1998–2005; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Okabe M.; Otsu M.; Ahn D. H. et al. Definitive proof for direct reprogramming of hematopoietic cells to pluripotency. Blood 114: 1764–1767; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Papapetrou E. P.; Tomishima M. J.; Chambers S. M. et al. Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiation. Proc Natl Acad Sci U S A 106: 12759–12764; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Park I. H.; Arora N.; Huo H. et al. Disease-specific induced pluripotent stem cells. Cell 134: 877–886; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Stadtfeld M.; Brennand K.; Hochedlinger K. Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol 18: 890–894; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K.; Tanabe K.; Ohnuki M. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861–872; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K.; Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Warren L.; Manos P. D.; Ahfeldt T. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7: 618–630; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Xu J.; Lu Y.; Ding F. et al. Reversal of diabetes in mice by intrahepatic injection of bone-derived GFP-murine mesenchymal stem cells infected with the recombinant retrovirus-carrying human insulin gene. World J Surg 31: 1872–1882; 2007.

    Article  PubMed  Google Scholar 

  • Zhao X. Y.; Li W.; Lv Z. et al. Efficient and rapid generation of induced pluripotent stem cells using an alternative culture medium. Cell Res 20: 383–386; 2010.

    Article  PubMed  Google Scholar 

  • Zhao Y.; Yin X.; Qin H. et al. Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell 3: 475–479; 2008.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from National Natural Science Foundation of China (no. 81070654/H0713), the Science and Technology Innovation Project of Jiangsu Province for Postgraduates (no. CXZZ11_0643) and the Science and Technology Innovation Project of Nantong University for Postgraduates (no. YKC11035). We acknowledge the technical assistance from Laboratory of Gynecology and Obstetrics (Affiliated Hospital of Nantong University), School of Life Sciences (Nantong University), SiDanSai Stem Cell Technology CO., LTD and Key Laboratory of Neuroregeneration (Nantong University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Wang.

Additional information

Editor: T. Okamoto

Lei Wang and Mingyan Zhu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Zhu, M., Guo, Q. et al. Comparing the reprogramming efficiency of mouse embryonic fibroblasts, mouse bone marrow mesenchymal stem cells and bone marrow mononuclear cells to iPSCs. In Vitro Cell.Dev.Biol.-Animal 48, 236–243 (2012). https://doi.org/10.1007/s11626-012-9493-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-012-9493-0

Keywords

Navigation