Skip to main content

Advertisement

Log in

Transcriptional expression profile of cultured human embryonic stem cells in vitro and in vivo

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The aims of this study were to analyze the spontaneous differentiation of human embryonic stem cells in vitro and in vivo and to investigate the influence of in vitro partial differentiation on in vivo teratoma formation in immunodeficient mice. Standardized methods are needed for long-term cultivation of undifferentiated stem cells and the multilineage cells that spontaneously differentiate from them. Accordingly, SA002 human embryonic stem cells were cultured on irradiated mouse embryonic fibroblasts cells, on irradiated human foreskin fibroblasts, or were cultured feeder-free using matrigel. Expression of marker protein transcripts was analyzed in undifferentiated and differentiated stem cells using real-time PCR, and both types of stem cells were transplanted subcutaneously into immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice to test for teratoma formation. Teratoma histology and expression profiles were subsequently characterized. Cells cultured using different conditions and morphologically undifferentiated cells had comparable marker expression profiles, showing high expression levels of markers for pluripotency and low-to-moderate expression levels of germ layer markers. Cells showing spontaneous differentiation that were cultured in feeder-free conditions in the absence of basic fibroblast growth factor demonstrated slight upregulation of sex determining region Y-box 17, connexin 32, and albumin expression at early time points, as well as expression of octamer-binding transcription factor 4, proteoglycan epitopes on podocalyxin (Trafalgar), and alkaline phosphatase. At later time points, expression of hepatocyte nuclear factor-3-beta, and hepatocyte nuclear factor-4-alpha and alpha fetoprotein was upregulated, whereas beta-3-tubulin, chemokine receptor, nestin, sex-determining region Y-box 17, and connexin 32 were downregulated. Expression of pluripotency markers remained high, and hematopoetic markers were not expressed. SA002 cells that showed spontaneous partial differentiation in vitro had a low teratoma formation capacity in vivo. Cells that were partially differentiated led to slower growing teratomas with more uniform histology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Adewumi O.; Aflatoonian B.; hrlund-Richter L.; Amit M.; Andrews P. W.; Beighton G.; Bello P. A.; Benvenisty N.; Berry L. S.; Bevan S.; Blum B.; Brooking J.; Chen K. G. et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol. 25: 803–816; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Amit M.; Itskovitz-Eldor J. Derivation and spontaneous differentiation of human embryonic stem cells. J. Anat. 200: 225–232; 2002.

    Article  PubMed  Google Scholar 

  • Amit M.; Itskovitz-Eldor J. Feeder-free culture of human embryonic stem cells. Methods Enzymol. 420: 37–49; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Applied Biosystem StepOne™ and StepOnePlus™ Real-Time PCR System Reagent Guide Part Number 4379704 Rev. B 04; 2007

  • Braam S. R.; Denning C.; Matsa E.; Young L. E.; Passier R.; Mummery C. L. Feeder-free culture of human embryonic stem cells in conditioned medium for efficient genetic modification. Nat. Protoc. 3(9): 1435–1443; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Brederlau A.; Correia A. S.; Anisimov S. V.; Elmi M.; Paul G.; Roybon L.; Morizane A.; Bergquist F.; Riebe I.; Nannmark U.; Carta M.; Hanse E.; Takahashi J.; Sasai Y.; Funa K.; Brundin P.; Eriksson P. S.; Li J. Y. Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells. 24(6): 1433–1440; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Brivanlou A. H.; Gage F. H.; Jaenisch R.; Jessell T.; Melton D.; Rossant J. Stem cells. Setting standards for human embryonic stem cells. Science. 300(5621): 913–916; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Chen H. F.; Chuang C. Y.; Shieh Y. K.; Chang H. W.; Ho H. N.; Kuo H. C. Novel autogenic feeders derived from human embryonic stem cells (hESCs) support an undifferentiated status of hESCs in xeno-free culture conditions. Hum. Reprod. 24(5): 1114–1125; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Conner D. A. Mouse embryo fibroblast (MEF) feeder cell preparation. Curr. Protoc. Mol. Biol. 51: 23.2.1–23.2.7; 2001.

  • Cooke M. J.; Stojkovic M.; Przyborski S. A. Growth of teratomas derived from human pluripotent stem cells is influenced by the graft site. Stem Cells Dev. 15(2): 254–259; 2006.

    Article  PubMed  CAS  Google Scholar 

  • D’Amour K. A.; Agulnick A. D.; Eliazer S.; Kelly O. G.; Kroon E.; Baetge E. E. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol. 23(12): 1534–1541; 2005.

    Article  PubMed  Google Scholar 

  • Drukker M.; Katchman H.; Katz G.; Even-Tov F. S.; Shezen E.; Hornstein E.; Mandelboim O.; Reisner Y.; Benvenisty N. Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells. 24(2): 221–229; 2006.

    Article  PubMed  Google Scholar 

  • Dziadek M.; Adamson E. Localization and synthesis of alphafoetoprotein in post-implantation mouse embryos. J. Embryol. Exp. Morphol. 43: 289–313; 1978.

    PubMed  CAS  Google Scholar 

  • Eakin G. S.; Hadjantonakis A. K.; Papaioannou V. E.; Behringer R. R. Developmental potential and behavior of tetraploid cells in the mouse embryo. Dev. Biol. 288(1): 150–159; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Ellerstrom C.; Strehl R.; Noaksson K.; Hyllner J.; Semb H. Facilitated expansion of human embryonic stem cells by single-cell enzymatic dissociation. Stem Cells. 25(7): 1690–1696; 2007.

    Article  PubMed  Google Scholar 

  • Fong C. Y.; Gauthaman K.; Bongso A. Teratomas from pluripotent stem cells: a clinical hurdle. J. Cell Biochem. 111: 769–781; 2010.

    Google Scholar 

  • Ghosh Z.; Huang M.; Hu S.; Wilson K. D.; Dey D.; Wu J. C. Dissecting the oncogenic and tumorigenic potential of differentiated human induced pluripotent stem cells and human embryonic stem cells. Cancer Res. 71(14): 5030–5039; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Ginzinger D. G. Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp. Hematol. 30(6): 503–512; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Greber B.; Lehrach H.; Adjaye J. Fibroblast growth factor 2 modulates transforming growth factor beta signaling in mouse embryonic fibroblasts and human ESCs (hESCs) to support hESC self-renewal. Stem Cells. 25(2): 455–464; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Habich A.; Jurga M.; Markiewicz I.; Lukomska B.; Bany-Laszewicz U.; Domanska-Janik K. Early appearance of stem/progenitor cells with neural-like characteristics in human cord blood mononuclear fraction cultured in vitro. Exp. Hematol. 34(7): 914–925; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Hannoun Z.; Fletcher J.; Greenhough S.; Medine C.; Samuel K.; Sharma R.; Pryde A.; Black J. R.; Ross J. A.; Wilmut I.; Iredale J. P.; Hay D. C. The comparison between conditioned media and serum-free media in human embryonic stem cell culture and differentiation. Cell Reprogram. 12(2): 133–140; 2010.

    PubMed  CAS  Google Scholar 

  • Heins N.; Englund M. C.; Sjoblom C.; Dahl U.; Tonning A.; Bergh C.; Lindahl A.; Hanson C.; Semb H. Derivation, characterization, and differentiation of human embryonic stem cells. Stem Cells. 22(3): 367–376; 2004.

    Article  PubMed  Google Scholar 

  • Heins N.; Lindahl A.; Karlsson U.; Rehnstrom M.; Caisander G.; Emanuelsson K.; Hanson C.; Semb H.; Bjorquist P.; Sartipy P.; Hyllner J. Clonal derivation and characterization of human embryonic stem cell lines. J. Biotechnol. 122(4): 511–520; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Iida M.; Heike T.; Yoshimoto M.; Baba S.; Doi H.; Nakahata T. Identification of cardiac stem cells with FLK1, CD31, and VE-cadherin expression during embryonic stem cell differentiation. FASEB J. 19(3): 371–378; 2005.

    Article  PubMed  CAS  Google Scholar 

  • King F. W.; Ritner C.; Liszewski W.; Kwan H. C.; Pedersen A.; Leavitt A. D.; Bernstein H. S. Subpopulations of human embryonic stem cells with distinct tissue-specific fates can be selected from pluripotent cultures. Stem Cells Dev. 18(10): 1441–1450; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Klimanskaya I.; Chung Y.; Becker S.; Lu S. J.; Lanza R. Human embryonic stem cell lines derived from single blastomeres. Nature. 444(7118): 481–485; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Klimanskaya I.; Chung Y.; Meisner L.; Johnson J.; West M. D.; Lanza R. Human embryonic stem cells derived without feeder cells. Lancet. 365(9471): 1636–1641; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Knoepfler P. S. Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells. 27(5): 1050–1056; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Lavon N.; Benvenisty N. Study of hepatocyte differentiation using embryonic stem cells. J. Cell Biochem. 96(6): 1193–1202; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Lee D. S.; Yu K.; Rho J. Y.; Lee E.; Han J. S.; Koo D. B.; Cho Y. S.; Kim J.; Lee K. K.; Han Y. M. Cyclopamine treatment of human embryonic stem cells followed by culture in human astrocyte medium promotes differentiation into nestin- and GFAP-expressing astrocytic lineage. Life Sci. 80(2): 154–159; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Li H. Y.; Chien Y.; Chen Y. J.; Chen S. F.; Chang Y. L.; Chiang C. H.; Jeng S. Y.; Chang C. M.; Wang M. L.; Chen L. K.; Hung S. I.; Huo T. I.; Lee S. D.; Chiou S. H. Reprogramming induced pluripotent stem cells in the absence of c-Myc for differentiation into hepatocyte-like cells. Biomaterials. 32: 5994–6005; 2011.

    Google Scholar 

  • Lim J. W.; Bodnar A. Proteome analysis of conditioned medium from mouse embryonic fibroblast feeder layers which support the growth of human embryonic stem cells. Proteomics. 2(9): 1187–1203; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Lu J.; Hou R.; Booth C. J.; Yang S. H.; Snyder M. Defined culture conditions of human embryonic stem cells. Proc. Natl. Acad. Sci. U.S.A. 103(15): 5688–5693; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Michalska A.E. Isolation and propagation of mouse embryonic fibroblasts and preparation of mouse embryonic feeder layer cells. Curr. Protoc. Stem Cell Biol. Chapter 1: Unit1C.3.; 2007

  • Nitsche A.; Becker M.; Junghahn I.; Aumann J.; Landt O.; Fichtner I.; Wittig B.; Siegert W. Quantification of human cells in NOD/SCID mice by duplex real-time polymerase-chain reaction. Haematologica. 86(7): 693–699; 2001.

    PubMed  CAS  Google Scholar 

  • O’Connor M. D.; Kardel M. D.; Eaves C. J. Functional assays for human embryonic stem cell pluripotency. Methods Mol. Biol. 690: 67–80; 2011.

    Article  PubMed  Google Scholar 

  • Odorico J. S.; Kaufman D. S.; Thomson J. A. Multilineage differentiation from human embryonic stem cell lines. Stem Cells. 19(3): 193–204; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Park Y. B.; Kim Y. Y.; Oh S. K.; Chung S. G.; Ku S. Y.; Kim S. H.; Choi Y. M.; Moon S. Y. Alterations of proliferative and differentiation potentials of human embryonic stem cells during long-term culture. Exp. Mol. Med. 40(1): 98–108; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Skottman H.; Hovatta O. Culture conditions for human embryonic stem cells. Reproduction. 132(5): 691–698; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Spagnoli F. M.; Hemmati-Brivanlou A. Guiding embryonic stem cells towards differentiation: lessons from molecular embryology. Curr. Opin. Genet. Dev. 16(5): 469–475; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Stojkovic P.; Lako M.; Przyborski S.; Stewart R.; Armstrong L.; Evans J.; Zhang X.; Stojkovic M. Human-serum matrix supports undifferentiated growth of human embryonic stem cells. Stem Cells. 23(7): 895–902; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Wesselschmidt R. L. The teratoma assay: an in vivo assessment of pluripotency. Methods Mol. Biol. 767: 231–241; 2011.

    Article  PubMed  Google Scholar 

  • Xu C.; Inokuma M. S.; Denham J.; Golds K.; Kundu P.; Gold J. D.; Carpenter M. K. Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol. 19(10): 971–974; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Zhou J.; Ou-Yang Q.; Li J.; Zhou X. Y.; Lin G.; Lu G. X. Human feeder cells support establishment and definitive endoderm differentiation of human embryonic stem cells. Stem Cells Dev. 17(4): 737–749; 2008.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Federal Ministry of Education and Research, Germany (01GN0526, I.F.). SA002 cells, which are listed in the NIH Human Embryonic Stem Cell Registry, were supplied by Cellartis AB, Göteborg, Sweden. Mrs. Monika Becker provided expert technical assistance for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlen Keil.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keil, M., Siegert, A., Eckert, K. et al. Transcriptional expression profile of cultured human embryonic stem cells in vitro and in vivo. In Vitro Cell.Dev.Biol.-Animal 48, 165–174 (2012). https://doi.org/10.1007/s11626-012-9487-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-012-9487-y

Keywords

Navigation