Skip to main content

Advertisement

Log in

Generation of a human urinary bladder smooth muscle cell line

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

We report a cell line (hBSM) established from human urinary bladder wall smooth muscle that maintains most of the phenotypic characteristics of smooth muscle cells. Cells were dissociated from the muscular layer with collagenase (1 mg/ml) and collected and grown in M199 supplemented with 10% fetal calf serum and 1% antibiotic–antimycotic. Primary cultures were grown for 2 d and small colonies were isolated by placing glass rings around the colonies. These colonies were picked up with a fine-tipped Pasteur pipette and subcultured. This procedure was repeated several times until a culture with a uniform stable morphology was obtained. hBSM cells are elongated with tapered ends, and in high density cultures, they form swirls of cells arranged in parallel. These cells have a doubling time of approximately 72 h. Western blotting and immunofluorescence microscopy revealed stable expression of smooth muscle-specific proteins, including myosin isoforms (N-terminal isoforms SM-A/B and C-terminal isoforms SM1/2), SM22, α-smooth muscle actin, h-caldesmon, Ca2+-dependent myosin light chain kinase, and protein kinase G. These cells contract upon exposure to 10 μM bethanechol and this contraction is reversible by washing away the drug. Karyotyping showed tetraploidy with a modal chromosome number of 87, with multiple rearrangements. To our knowledge, the hBSM cell line is the first human cell line established from bladder wall smooth muscle that expresses both N- and C-terminal smooth muscle myosin isoforms. This cell line will provide a valuable tool for studying transcriptional regulation of smooth muscle myosin isoforms and effects of drugs on cellular function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Arafat H. A.; Kim G. S.; DiSanto M. E.; Wein A. J.; Chacko S. Heterogeneity of bladder myocytes in vitro: modulation of myosin isoform expression. Tissue Cell 33: 219–232; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Babij P.; Kelly C.; Periasamy M. Characterization of a mammalian smooth muscle myosin heavy-chain gene: complete nucleotide and protein coding sequence and analysis of the 5′ end of the gene. Proc. Natl. Acad. Sci. U. S. A. 88: 10676–10680; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Babij P.; Periasamy M. Myosin heavy chain isoform diversity in smooth muscle is produced by differential RNA processing. J. Mol. Biol. 210: 673–679; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Boerth N. J.; Dey N. B.; Cornwell T. L.; Lincoln T. M. Cyclic GMP-dependent protein kinase regulates vascular smooth muscle cell phenotype. J. Vasc. Res. 34: 245–259; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Bonin L. R.; Madden K.; Shera K.; Ihle J.; Matthews C.; Aziz S. et al. Generation and characterization of human smooth muscle cell lines derived from atherosclerotic plaque. Arterioscler. Thromb. Vasc. Biol. 19: 575–587; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Burke J. M.; Balian G.; Ross R.; Bornstein P. Synthesis of types I and III procollagen and collagen by monkey aortic smooth muscle cells in vitro. Biochemistry 16: 3243–3249; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Chang S.; Hypolite J. A.; Zderic S. A.; Wein A. J.; Chacko S.; DiSanto M. E. Enhanced force generation by corpus cavernosum smooth muscle in rabbits with partial bladder outlet obstruction. J. Urol. 167: 2636–2644; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Cornwell T. L.; Soff G. A.; Traynor A. E.; Lincoln T. M. Regulation of the expression of cyclic GMP-dependent protein kinase by cell density in vascular smooth muscle cells. J. Vasc. Res. 31: 330–337; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Daniel J. L.; Adelstein R. S. Isolation and properties of platelet myosin light chain kinase. Biochemistry 15: 2370–2377; 1976.

    Article  PubMed  CAS  Google Scholar 

  • DiSanto M. E.; Cox R. H.; Wang Z.; Chacko S. NH2-terminal-inserted myosin II heavy chain is expressed in smooth muscle of small muscular arteries. Am. J. Physiol. 272: C1532–C1542; 1997.

    PubMed  CAS  Google Scholar 

  • DiSanto M. E.; Wang Z.; Menon C.; Zheng Y.; Chacko T.; Hypolite J. et al. Expression of myosin isoforms in smooth muscle cells in the corpus cavernosum penis. Am. J. Physiol. 275: C976–C987; 1998.

    PubMed  CAS  Google Scholar 

  • Firulli A. B.; Han D.; Kelly-Roloff L.; Koteliansky V. E.; Schwartz S. M.; Olson E. N. et al. A comparative molecular analysis of four rat smooth muscle cell lines. In Vitro Cell Dev. Biol. Anim 34: 217–226; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Hall K. L.; Harding J. W.; Hosick H. L. Isolation and characterization of clonal vascular smooth muscle cell lines from spontaneously hypertensive and normotensive rat aortas. In Vitro Cell Dev. Biol. 27A: 791–798; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Kimes B. W.; Brandt B. L. Properties of a clonal muscle cell line from rat heart. Exp. Cell Res. 98: 367–381; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Kropp B. P.; Zhang Y.; Tomasek J. J.; Cowan R.; Furness III P. D.; Vaughan M. B. et al. Characterization of cultured bladder smooth muscle cells: assessment of in vitro contractility. J. Urol. 162: 1779–1784; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka R.; Yoshida M. C.; Furutani Y.; Imamura S.; Kanda N.; Yanagisawa M. et al. Human smooth muscle myosin heavy chain gene mapped to chromosomal region 16q12. Am. J. Med. Genet. 46: 61–67; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Nachtigal M.; Nagpal M. L.; Greenspan P.; Nachtigal S. A.; Legrand A. Characterization of a continuous smooth muscle cell line derived from rabbit aorta. In Vitro Cell Dev. Biol. 25: 892–898; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Panettieri R. A.; Murray R. K.; DePalo L. R.; Yadvish P. A.; Kotlikoff M. I. A human airway smooth muscle cell line that retains physiological responsiveness. Am. J. Physiol. 256: C329–C335; 1989.

    PubMed  CAS  Google Scholar 

  • Ross R.; Glomset J. A. Atherosclerosis and the arterial smooth muscle cell: proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science 180: 1332–1339; 1973.

    Article  PubMed  CAS  Google Scholar 

  • Ruegg U. T.; Doyle V. M.; Zuber J. F.; Hof R. P. A smooth muscle cell line suitable for the study of voltage sensitive calcium channels. Biochem. Biophys. Res. Commun. 130: 447–453; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Schrock E.; Du M. S.; Veldman T.; Schoell B.; Wienberg J.; Ferguson-Smith M. A. et al. Multicolor spectral karyotyping of human chromosomes. Science 273: 494–497; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Seabright M. A rapid banding technique for human chromosomes. Lancet 2: 971–972; 1971.

    Article  PubMed  CAS  Google Scholar 

  • Shukla A. R.; Nguyen T.; Zheng Y.; Zderic S. A.; DiSanto M.; Wein A. J. et al. Over expression of smooth muscle specific caldesmon by transfection and intermittent agonist induced contraction alters cellular morphology and restores differentiated smooth muscle phenotype. J. Urol. 171: 1949–1954; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Simons M.; Wang M.; McBride O. W.; Kawamoto S.; Yamakawa K.; Gdula D. et al. Human nonmuscle myosin heavy chains are encoded by two genes located on different chromosomes. Circ. Res. 69: 530–539; 1991.

    PubMed  CAS  Google Scholar 

  • Somlyo A. P.; Somlyo A. V. Vascular smooth muscle. I. Normal structure, pathology, biochemistry, and biophysics. Pharmacol. Rev. 20: 197–272; 1968.

    PubMed  CAS  Google Scholar 

  • Zhang E. Y.; Stein R.; Chang S.; Zheng Y.; Zderic S. A.; Wein A. J. et al. Smooth muscle hypertrophy following partial bladder outlet obstruction is associated with overexpression of non-muscle caldesmon. Am. J. Pathol. 164: 601–612; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y.; Weber W. T.; Wang S.; Wein A. J.; Zderic S. A.; Chacko S. et al. Generation of a cell line with smooth muscle phenotype from hypertrophied urinary bladder. Am. J. Physiol Cell Physiol 283: C373–C382; 2002.

    PubMed  CAS  Google Scholar 

  • Zhou L.; Li J.; Goldsmith A. M.; Newcomb D. C.; Giannola D. M.; Vosk R. G. et al. Human bronchial smooth muscle cell lines show a hypertrophic phenotype typical of severe asthma. Am. J. Respir. Crit Care Med. 169: 703–711; 2004.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH grants RO1 DK069898 and P50 DK052620. We thank Ms. Jocelyn McCabe for her help with preparing the manuscript and Dr. Sunish Mohanan for his help with microscopy and imaging. We also thank Mr. Brian Haldman (Dr. Chris Cremo’s laboratory, Department of Biochemistry, University of Nevada School of Medicine, Reno, Nevada) for the generous gift of purified gizzard myosin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Chacko.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Y., Chang, S., Boopathi, E. et al. Generation of a human urinary bladder smooth muscle cell line. In Vitro Cell.Dev.Biol.-Animal 48, 84–96 (2012). https://doi.org/10.1007/s11626-011-9473-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-011-9473-9

Keywords

Profiles

  1. Sandra Burkett