Skip to main content
Log in

Stable transformation and cloning mediated by piggyBac vector and RNA interference knockdown of Drosophila ovarian cell line

  • Report
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

An in vitro study is a powerful method for elucidating gene functions in cellular and developmental events. However, until date, no reliable in vitro transformation, cloning, or knockdown system has been reported for Drosophila cells, with the exception of S2 and Kc cells. In this study, we demonstrated that the piggyBac vector stably integrates donor DNA into ovarian somatic sheets derived from follicle stem cells. The transformed ovarian somatic sheet cells were easily cloned with a new piggyBac selection vector carrying enhanced green fluorescent protein and dihydrofolate reductase genes, egfp, and dhfr, respectively, in culture media containing methotrexate, an inhibitor of DNA synthesis. Donor egfp continued to be expressed at a high level in long-term culture. Furthermore, the translation of donor egfp was inhibited by treatment with double-stranded RNA derived from the target gene. The transfection and cloning methods mediated by the piggyBac vector would thus be useful for future analyses of gene functions in OSS cells and possibly be applicable to other Drosophila cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Bai J.; Binari R.; Ni J. Q.; Vijayakanthan M.; Li H. S.; Perrimon N. RNA interference screening in Drosophila primary cells for genes involved in muscle assembly and maintenance. Development 135: 1439–1449; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Baum B.; Cherbas L. Drosophila cell lines as model systems and as an experimental tool. In: Dahmann C. (ed) Drosophila methods and protocols. Humana, Totowa, pp 391–424; 2008.

    Google Scholar 

  • Bourouis M.; Jarry B. Vectors containing a prokaryotic dihydrofolate reductase gene transform Drosophila cells to methotrexate-resistance. EMBO J. 2: 1099–1104; 1983.

    PubMed  CAS  Google Scholar 

  • Coonrod A.; Li F. Q.; Horwitz M. On the mechanism of DNA transfection: efficient gene transfer without viruses. Gene Ther. 4: 1313–1321; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Fraser M. J.; Ciszczon T.; Elick T.; Bauser C. Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol. Biol. 5: 141–151; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Hammond A. M.; Bernstein E.; Beach D.; Hannon G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404: 293–296; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Handler A. M. Use of the piggyBac transposon for germ-line transformation of insects. Insect Brioche Mol. Biol. 32: 1211–1220; 2002.

    Article  CAS  Google Scholar 

  • Handler A. M.; Harrell II R. A. Germline transformation of Drosophila melanogaster with the piggyBac transposon vector. Insect Mol. Biol. 8: 449–457; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Lau N. C.; Robine N.; Martin R.; Chung W.-J.; Niki Y.; Berezikov E.; Kingston R.; Lai E. C. Abundant primary piRNAs, endo-siRNAs and microRNAs in a Drosophila ovary cell line. Genome Res. 19: 1776–1785; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Li X.; Heinrich J. C.; Scott M. J. piggyBac-mediated transposition in Drosophila melanogaster: an evaluation of the use of constitutive promoters to control transposase gene expression. Insect Mol. Biol. 10: 447–455; 2001.

    PubMed  CAS  Google Scholar 

  • Niki Y.; Ymaguchi T.; Mahowald A. P. Establishment of stable cell lines of Drosophila germ-line stem cells. Proc. Natl. Acad. Sci. U.S.A. 103: 16325–16330; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Okamura K.; Ishizuka A.; Siomi H.; Siomi M. C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18: 1655–1666; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Schneider I. Cell line derived from late embryonic stages of Drosophila melanogaster. J. Embryol. Exp. Morph. 27: 353–365; 1972.

    PubMed  CAS  Google Scholar 

  • Sumitani M.; Yamamoto D. S.; Oishi K.; Lee J. M.; Hatakeyama M. Germline transformation of the saefly, Athalia rosae (Hymenoptera: Symphyta), mediated by a piggyBac-derived vector. Insect Brioche Mol. Biol. 33: 449–458; 2003.

    Article  CAS  Google Scholar 

  • Tamura T.; Thlbert C.; Royer C.; Kanda T.; Abraham E.; Kamba M.; Komoto N.; Thomas J. L.; Mauchamp B.; Chavancy G.; Shirk P.; Fraser M.; Prudhomme J. C.; Couble P. Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nature Biotech. 18: 81–84; 1999.

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. T. Tamura, Dr. M. Hatakeyama, Dr. H. Sano, and Dr. M. Hashitani for providing reagents and to H. Watanabe for his critical reading of this manuscript. This work was partly supported by a Grant-in-Aid for Scientific Research (KAKENHI) on Innovative Areas, “Regulatory Mechanism of Gamete Stem Cells.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzo Niki.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uetake, H., Oka, K. & Niki, Y. Stable transformation and cloning mediated by piggyBac vector and RNA interference knockdown of Drosophila ovarian cell line. In Vitro Cell.Dev.Biol.-Animal 47, 689–694 (2011). https://doi.org/10.1007/s11626-011-9463-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-011-9463-y

Keywords

Navigation